A Computational Framework for Linear SVMs (COFFIN — large scale (non)-linear learning)

Sören Sonnenburg^{1,2} and Vojtech Franc³

¹ Berlin Institute of Technology, Germany
 ² Friedrich Miescher Laboratory, Max Planck Society, Germany
 ³ Center for Machine Perception, Czech Republic

- 2 Computational Framework for Linear SVMs
- 3 Applications

Motivation

Many Applications have huge sample sizes

- Bioinformatics (Splice Sites, Gene Boundaries,...)
- IT-Security (Network traffic)
- Text-Classification (Spam vs. Non-Spam)
- Image Recognition

AIM:

Development of a large scale learning framework for SVMs

- Training on full sample necessary to achieve state-of-the-art results
- Apply the learner to massive data sets

Motivation

Many Applications have huge sample sizes

- Bioinformatics (Splice Sites, Gene Boundaries,...)
- IT-Security (Network traffic)
- Text-Classification (Spam vs. Non-Spam)
- Image Recognition

AIM:

Development of a large scale learning framework for SVMs

- Training on full sample necessary to achieve state-of-the-art results
- Apply the learner to massive data sets

Support Vector Machines (SVMs)

 SVMs learn weights α ∈ ℝ^m over training examples in kernel feature space Φ : x → ℝⁿ

• Decision function $f(\mathbf{x}) = \operatorname{sign} \left(\sum_{i=1}^{m} y_i \alpha_i k(\mathbf{x}, \mathbf{x}_i) + b \right)$, with kernel $k(\mathbf{x}, \mathbf{x}') = \langle \Phi(\mathbf{x}), \Phi(\mathbf{x}') \rangle$

SVMs rock!

- Kernels flexible!
- In many applications SVMs define the state-of-the-art!
- But not large scale!

Support Vector Machines (SVMs)

 SVMs learn weights α ∈ ℝ^m over training examples in kernel feature space Φ : x → ℝⁿ

• Decision function $f(\mathbf{x}) = \operatorname{sign} \left(\sum_{i=1}^{m} y_i \alpha_i k(\mathbf{x}, \mathbf{x}_i) + b \right)$, with kernel $k(\mathbf{x}, \mathbf{x}') = \langle \Phi(\mathbf{x}), \Phi(\mathbf{x}') \rangle$

SVMs rock!

- Kernels flexible!
- In many applications SVMs define the state-of-the-art!
- But not large scale!

Support Vector Machines are a Dead End

The Curse of Support Vectors

To compute output on all m examples $\mathbf{x}_1, \ldots, \mathbf{x}_m$:

$$\forall j = 1, \dots, m: \sum_{i=1}^{m_s} \alpha_i y_i \, \mathsf{k}(\mathbf{x}_i, \mathbf{x}_j) + b$$

Computational effort:

- All $\mathcal{O}(m_s mT)$, (T time to compute the kernel)
- Effort Scales linearly with $m_s = \mathcal{O}(m) := \# \mathsf{SVs}$
- ⇒ SVM's in bigO are not faster than standard k-NN.
 ⇒ Kernel Machines are just not large-scale!

What about Linear SVMs ?

- Linear Support Vector Machines learn weights $\mathbf{w} \in \mathbb{R}^n$
- Decision function $\mathbf{f}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b$

Recent Progress in Linear SVM solvers

- SGD (Bottou 2007), SGD-QN (Bordes et al., 2009)
- SVM^{perf} (Joachims 2006), liblinear (Fan et al. 2008)
- BMRM (Teo et.al. 2007), OCAS (Franc, Sonnenburg 2009)
- \Rightarrow Linear training Effort $\mathcal{O}(m)$
- \Rightarrow Computing Outputs Linear Effort $\mathcal{O}(nm)$

... already linear time but just linear

What about Linear SVMs ?

- Linear Support Vector Machines learn weights $\mathbf{w} \in \mathbb{R}^n$
- Decision function $\mathbf{f}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b$

Recent Progress in Linear SVM solvers

- SGD (Bottou 2007), SGD-QN (Bordes et al., 2009)
- SVM^{perf} (Joachims 2006), liblinear (Fan et al. 2008)
- BMRM (Teo et.al. 2007), OCAS (Franc, Sonnenburg 2009)
- \Rightarrow Linear training Effort $\mathcal{O}(m)$
- \Rightarrow Computing Outputs Linear Effort $\mathcal{O}(nm)$
- ... already linear time but just linear

Motivation

AIM: Development of a large scale learning framework for SVMs

"Algorithm [linear SVM solver] improvements do not improve the order of test error convergence. They can simply improve constant factors and therefore **compete evenly with the implementation improvements**. Time spent refining the implementation is time well spent."

from: Bordes, Bottou, Gallinari: SQD-QN: Careful Quasi-Newton Stochastic Gradient Descent. JMLR 2009.

Towards a computational framework for linear SVMs

Linear SVM solvers like liblinear, SGD, BMRM, OCAS only require two operations to access data:

- (i) dot product between feature vector and the vector **w**: $r \leftarrow \langle \mathbf{x}, \mathbf{w} \rangle$ **DOT**
- (ii) multiplication with scalar $\alpha \in \Re$ and addition to vector $\mathbf{v} \in \Re^n$ $\mathbf{v} \leftarrow \alpha \mathbf{x} + \mathbf{v}$ ADD

COFFIN

COFFIN really is just two simple ideas:

On demand compute...

• Features $\Phi(\mathbf{x})$ (only non-zero dims)

- Non-Linearity Possible
- Examples: Low Degree Polynomial Kernel, Spectrum Kernel, Weighted Degree Kernel
- On-the-fly (de)compression

Virtual Examples

- Incorporating Invariances possible
- Examples: Image translation, rotation, etc

Needs efficient data structure for w!

- ..., dense, sorted array, trees, hashes
- fast only when $|\Phi_{
 eq 0}(\mathbf{z})| \sim \textit{dim}(\mathbf{z})$

COFFIN

COFFIN really is just two simple ideas:

On demand compute...

- Features $\Phi(\mathbf{x})$ (only non-zero dims)
 - Non-Linearity Possible
 - Examples: Low Degree Polynomial Kernel, Spectrum Kernel, Weighted Degree Kernel
 - On-the-fly (de)compression
- Virtual Examples
 - Incorporating Invariances possible
 - Examples: Image translation, rotation, etc

Needs efficient data structure for w!

- ..., dense, sorted array, trees, hashes
- fast only when $|\Phi_{
 eq 0}(\mathbf{z})| \sim \textit{dim}(\mathbf{z})$

Data Structures

Effort of ADD and DOT for z and memory requirement of w.

	Dense	Sorted Array	Tree
Add	$\mathcal{O}(\Phi_{\neq 0}(z))$	$\mathcal{O}(\mathbf{w} _{ eq 0}) + \Phi_{ eq 0}(\mathbf{z}))$	$\mathcal{O}(\Phi_{ eq 0}(z))$
			to $\mathcal{O}({\it K} \Phi_{ eq 0}({\sf z}))$
Dot	$\mathcal{O}(\Phi_{\neq 0}(z))$	$\mathcal{O}(\mathbf{w} _{\neq 0}) + \Phi_{\neq 0}(\mathbf{z}))$	$\mathcal{O}(\Phi_{ eq 0}(z))$
			to $\mathcal{O}(K \Phi_{ eq 0}(\mathbf{z}))$
Mem	$\mathcal{O}(n)$	$\mathcal{O}(\sum_{i=1}^{m} \Phi_{\neq 0}(\mathbf{z}_i))$	$\mathcal{O}(\sum_{i=1}^{m} \Phi_{\neq 0}(\mathbf{z}_i))$

Sparse data structures have huge overhead!

Hashing to the Rescue (Shi et al (2009))

- Always use dense w with "compressed index"
- Hash function $h(J) \mapsto 1, \ldots, 2^{\gamma}$,

•
$$(\widehat{\Phi}(\mathbf{z}))_j = \sum_{i \in J; h(i)=j} (\Phi(\mathbf{z}))_i$$

Data Structures

Effort of ADD and DOT for z and memory requirement of w.

	Dense	Sorted Array	Tree
Add	$\mathcal{O}(\Phi_{\neq 0}(z))$	$\mathcal{O}(\mathbf{w} _{ eq 0}) + \Phi_{ eq 0}(\mathbf{z}))$	$\mathcal{O}(\Phi_{ eq 0}(z))$
			to $\mathcal{O}({\it K} \Phi_{ eq 0}({\sf z}))$
Dot	$\mathcal{O}(\Phi_{\neq 0}(z))$	$\mathcal{O}(\mathbf{w} _{ eq 0}) + \Phi_{ eq 0}(\mathbf{z}))$	$\mathcal{O}(\Phi_{ eq 0}(\mathbf{z}))$
			to $\mathcal{O}(K \Phi_{ eq 0}(\mathbf{z}))$
Mem	$\mathcal{O}(n)$	$\mathcal{O}(\sum_{i=1}^{m} \Phi_{\neq 0}(\mathbf{z}_i))$	$\mathcal{O}(\sum_{i=1}^{m} \Phi_{\neq 0}(\mathbf{z}_i))$

Sparse data structures have huge overhead!

Hashing to the Rescue (Shi et al (2009))

- Always use dense w with "compressed index"
- Hash function $h(J) \mapsto 1, \ldots, 2^{\gamma}$,

•
$$(\widehat{\Phi}(\mathsf{z}))_j = \sum_{i \in J; h(i)=j} (\Phi(\mathsf{z}))_i$$

Splice Site Predictions

Application to Human Acceptor Splice Site Prediction

Splice Site Prediction

Discriminate true signal positions against all other positions

- True sites: fixed window around a true site
- Decoy sites: all other consensus sites

AAACAAATAAGTAACTAATCTTTT<mark>AG</mark>GAAGAACGTTTCAACCATTTTGAG AAGATTAAAAAAAAACAAATTTTT<mark>AG</mark>CATTACAGATATAATAATCTAATT CACTCCCCAAATCAACGATATTTTA<mark>G</mark>TTCACTAACACATCCGTCTGTGCC TTAATTTCACTTCCACATACTTCCAGATCATCAATCTCCAAAACCAACAC TTGTTTTAATATTCAATTTTTTCACAGTAAGTTGCCAATTCAATGTTCCAC TACTAATTATGAAATTAAAATTCAGTGTGCCGATGGAAACCGAGAGAGTC

- 50 million training examples
- COFFIN with kernels: weighted spectrum and weighted degree (explicit and hashed representation) $\approx 200,000,000$ dims

Results

It's fast and works!

- $\bullet\,$ Factor 47 faster on $10\cdot10^{6}$ examples than linadd
- New state-of-the-art results auPRC 58.57% vs. 53.01%

Gender Classification

Distinguish Females from Males solely based on Faces

- learn COFFIN on labelled faces
- virtual examples: translation, rotation, scale
- train ≈ 5 million sample (that would require 50GB) on Vojtechs notebook

Results I

It's fast and works - again!

- auROC 95.44%
- (vs. auROC 89.57% without VE)

Klaus-Robert Müller is a male!

Results II

Results III

Results IV

Conclusions

COFFIN: Computational Framework for Linear SVMs

- Allows non-linearity
- Applicable to huge datasets
- General and often state-of-the art detectors

Datasets, Scripts, Efficient implementation

- Data and Scripts http://sonnenburgs.de/soeren/coffin
- Implementation http://www.shogun-toolbox.org
- More machine learning software http://mloss.org

Discussion

- $\bullet\,$ Training on $\approx 2\cdot 10^8$ dimensional $5\cdot 10^7$ sample feasible
- Drastically reduced memory requirements; depending on features speed gain or speed penalty