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Motivation

Many Applications have huge sample sizes

Bioinformatics (Splice Sites, Gene Boundaries,. . . )

IT-Security (Network traffic)

Text-Classification (Spam vs. Non-Spam)

Image Recognition

AIM:
Development of a large scale learning framework for SVMs

Training on full sample necessary to achieve state-of-the-art
results

Apply the learner to massive data sets
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Support Vector Machines (SVMs)

SVMs learn weights α ∈ Rm over
training examples in kernel feature
space Φ : x 7→ Rn

Decision function f (x) = sign (
∑m

i=1 yiαik(x, xi ) + b) ,
with kernel k(x, x′) = 〈Φ(x),Φ(x′)〉

SVMs rock!

Kernels - flexible!

In many applications SVMs define the state-of-the-art!

But not large scale!
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Support Vector Machines are a Dead End

The Curse of Support Vectors

To compute output on all m examples x1, . . . , xm:

∀j = 1, . . . ,m :
ms∑
i=1

αiyi k(xi , xj) + b

Computational effort:

All O(msmT ), (T time to compute the kernel)

Effort Scales linearly with ms = O(m) := #SVs

⇒ SVM’s in bigO are not faster than standard k-NN.
⇒ Kernel Machines are just not large-scale!
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What about Linear SVMs ?

Linear Support Vector Machines
learn weights w ∈ Rn

Decision function f(x) = 〈w, x〉+ b

Recent Progress in Linear SVM solvers

SGD (Bottou 2007), SGD-QN (Bordes et al., 2009)

SVMperf (Joachims 2006), liblinear (Fan et al. 2008)

BMRM (Teo et.al. 2007), OCAS (Franc, Sonnenburg 2009)

⇒ Linear training Effort O(m)
⇒ Computing Outputs Linear Effort O(nm)

. . . already linear time but just linear
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Motivation

AIM: Development of a large scale learning framework for SVMs

“Algorithm [linear SVM solver] improvements do not
improve the order of test error convergence. They can
simply improve constant factors and therefore compete
evenly with the implementation improvements. Time
spent refining the implementation is time well spent.”

from: Bordes, Bottou, Gallinari: SQD-QN: Careful Quasi-Newton
Stochastic Gradient Descent. JMLR 2009.
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Towards a computational framework for linear SVMs

Linear SVM solvers like liblinear, SGD, BMRM, OCAS only require
two operations to access data:

(i) dot product between feature vector and the vector w:
r ← 〈x,w〉 DOT

(ii) multiplication with scalar α ∈ < and addition to vector v ∈ <n

v← αx + v ADD
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COFFIN

COFFIN really is just two simple ideas:

On demand compute. . .
1 Features Φ(x) (only non-zero dims)

Non-Linearity Possible
Examples: Low Degree Polynomial Kernel, Spectrum Kernel,
Weighted Degree Kernel
On-the-fly (de)compression

2 Virtual Examples

Incorporating Invariances possible
Examples: Image translation, rotation, etc

Needs efficient data structure for w!

. . ., dense, sorted array, trees, hashes

fast only when |Φ 6=0(z)| ∼ dim(z)
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Data Structures

Effort of ADD and DOT for z and memory requirement of w.

Dense Sorted Array Tree

Add O(|Φ6=0(z)|) O(|w|6=0) + |Φ6=0(z)|) O(|Φ 6=0(z)|)
to O(K |Φ 6=0(z)|)

Dot O(|Φ6=0(z)|) O(|w|6=0) + |Φ6=0(z)|) O(Φ6=0(z)|)
to O(K |Φ 6=0(z)|)

Mem O(n) O(
∑m

i=1 |Φ 6=0(zi )|) O(
∑m

i=1 |Φ 6=0(zi )|)

Sparse data structures have huge overhead!

Hashing to the Rescue (Shi et al (2009))

Always use dense w with “compressed index”

Hash function h(J) 7→ 1, . . . , 2γ ,

(Φ̂(z))j =
∑

i∈J;h(i)=j(Φ(z))i
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Splice Site Predictions

Transcription

Splicing

. . .

C

DNA

pre-mRNA

mRNA

Protein

Transcrip-
tion Start Exon Intron Exon Exon Exon ExonIntron Intron Intron

cap

N

polyA

polyAcap

ATG TAG,TAA
TGA

GT AG GT AG GT AG GT AG

. . .

Translation

Application to Human Acceptor Splice Site Prediction
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Splice Site Prediction

Discriminate true signal positions against all other positions

True sites: fixed window around a true site

Decoy sites: all other consensus sites

50 million training examples

COFFIN with kernels: weighted spectrum and weighted degree
(explicit and hashed representation) ≈ 200, 000, 000 dims
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Results
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It’s fast and works!

Factor 47 faster on 10 · 106 examples than linadd

New state-of-the-art results auPRC 58.57% vs. 53.01%
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Gender Classification

Distinguish Females from Males solely based on Faces

learn COFFIN on labelled faces

virtual examples: translation,
rotation, scale

train ≈ 5 million sample (that
would require 50GB) on Vojtechs
notebook



Introduction and Motivation Computational Framework for Linear SVMs Applications Discussion

Results I

It’s fast and works - again!

auROC 95.44%

(vs. auROC 89.57% without VE)

Klaus-Robert Müller is a male!
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Results II
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Results III
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Results IV
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Conclusions

COFFIN: Computational Framework for Linear SVMs

Allows non-linearity

Applicable to huge datasets

General and often state-of-the art detectors

Datasets, Scripts, Efficient implementation

Data and Scripts http://sonnenburgs.de/soeren/coffin

Implementation http://www.shogun-toolbox.org

More machine learning software http://mloss.org

Discussion

Training on ≈ 2 · 108 dimensional 5 · 107 sample feasible

Drastically reduced memory requirements; depending on
features speed gain or speed penalty

http://sonnenburgs.de/soeren/coffin
http://www.shogun-toolbox.org
http://mloss.org
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