A Computational Framework for Linear SVMs (COFFIN — large scale (non)-linear learning)

Sören Sonnenburg
TU Berlin

joint work with Vojtech Franc

Outline

- Introduction and Motivation
- 2 Computational Experiments for Linear SVMs
- 3 Applications
- 4 Discussion

Motivation

Many Applications have huge sample sizes

- Bioinformatics (Splice Sites, Gene Boundaries,...)
- IT-Security (Network traffic)
- Text-Classification (Spam vs. Non-Spam)
- Image Recognition

AIM: Development of a large scale learning framework for SVMs

- Training on full sample necessary to achieve state-of-the-art results
- Apply the learner to massive data sets

Motivation

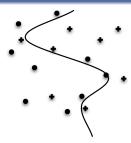
Many Applications have huge sample sizes

- Bioinformatics (Splice Sites, Gene Boundaries,...)
- IT-Security (Network traffic)
- Text-Classification (Spam vs. Non-Spam)
- Image Recognition

AIM: Development of a large scale learning framework for SVMs

- Training on full sample necessary to achieve state-of-the-art results
- Apply the learner to massive data sets

Support Vector Machines (SVMs)



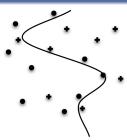
• SVMs learn weights $\alpha \in \mathbb{R}^m$ over training examples in kernel feature space $\Phi: \mathbf{x} \mapsto \mathbb{R}^n$

• Decision function
$$f(\mathbf{x}) = \operatorname{sign} \left(\sum_{i=1}^{m} y_i \alpha_i \mathbf{k}(\mathbf{x}, \mathbf{x}_i) + b \right)$$
, with kernel $k(\mathbf{x}, \mathbf{x}') = \Phi(\mathbf{x}) \cdot \Phi(\mathbf{x}')$

SVMs rock!

- Kernels flexible
- In many applications SVMs define the state-of-the-art!
- But not large scale!

Support Vector Machines (SVMs)



• SVMs learn weights $\alpha \in \mathbb{R}^m$ over training examples in kernel feature space $\Phi: \mathbf{x} \mapsto \mathbb{R}^n$

• Decision function $f(\mathbf{x}) = \operatorname{sign} \left(\sum_{i=1}^{m} y_i \alpha_i \mathbf{k}(\mathbf{x}, \mathbf{x}_i) + b \right)$, with kernel $k(\mathbf{x}, \mathbf{x}') = \Phi(\mathbf{x}) \cdot \Phi(\mathbf{x}')$

SVMs rock!

- Kernels flexible!
- In many applications SVMs define the state-of-the-art!
- But not large scale!

Applications

Support Vector Machines are a Dead End

The Curse of Support Vectors

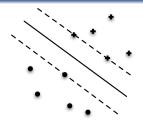
To compute output on all m examples $\mathbf{x}_1, \dots, \mathbf{x}_m$:

$$\forall j = 1, \ldots, m: \sum_{i=1}^{m_s} \alpha_i y_i \, \mathsf{k}(\mathbf{x}_i, \mathbf{x}_j) + b$$

Computational effort:

- All $\mathcal{O}(m_s mT)$, (T time to compute the kernel)
- Effort Scales linearly with $m_s = \mathcal{O}(m) := \#\mathsf{SVs}$
- ⇒ SVM's in bigO are not faster than standard k-NN.
- ⇒ Kernel Machines are just not large-scale!

What about Linear SVMs?

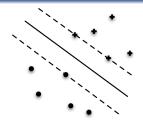


- Linear Support Vector Machines learn weights $\mathbf{w} \in \mathbb{R}^n$
- Decision function $f(x) = w \cdot x + b$

Recent Progress in Linear SVM solvers

- SGD (Bottou 2007), SGD-QN (Bordes et al., 2009)
- SVM^{perf} (Joachims 2006)
- BMRM (Teo et.al. 2007, OCAS (Franc, Sonnenburg 2009)
- \Rightarrow Linear training Effort $\mathcal{O}(m)$
- \Rightarrow Computing Outputs Linear Effort $\mathcal{O}(nm)$
- ... but already linear time and just linear

What about Linear SVMs?



- Linear Support Vector Machines learn weights $\mathbf{w} \in \mathbb{R}^n$
- Decision function $f(x) = w \cdot x + b$

Recent Progress in Linear SVM solvers

- SGD (Bottou 2007), SGD-QN (Bordes et al., 2009)
- SVM^{perf} (Joachims 2006)
- BMRM (Teo et.al. 2007, OCAS (Franc, Sonnenburg 2009)
- \Rightarrow Linear training Effort $\mathcal{O}(m)$
- \Rightarrow Computing Outputs Linear Effort $\mathcal{O}(nm)$
- ... but already linear time and just linear

Motivation

AIM: Development of a large scale learning framework for SVMs

"Algorithm [linear SVM solver] improvements do not improve the order of test error convergence. They can simply improve constant factors and therefore compete evenly with the implementation improvements. Time spent refining the implementation is time well spent."

from: Bordes, Bottou, Gallinari: SQD-QN: Careful Quasi-Newton Stochastic Gradient Descent. JMLR 2009.

Towards a computational framework for linear SVMs

Linear SVM solvers like liblinear, SGD, BMRM, Ocas all only require two operations:

- (i) dot product between feature vector and the vector \mathbf{w} : $r \leftarrow \langle \mathbf{x}, \mathbf{w} \rangle$ DOT
- (ii) multiplication with a scalar $\alpha\in\Re$ and addition to the vector
 - $\mathbf{v} \in \Re^n$: $\mathbf{v} \leftarrow \alpha \mathbf{x} + \mathbf{v}$

COFFIN really is just two simple ideas:

On demand compute...

- Features $\Phi(\mathbf{x})$ (only non-zero dims)
 - Non-Linearity Possible
 - Examples: Low Degree Polynomial Kernel, Spectrum Kernel, Weighted Degree Kernel
 - On-the-fly (de)compression
- Virtual Examples
 - Incorporating Invariances possible
 - Examples: Image translation, rotation, etc.

Needs efficient data structure for w!

- ..., dense, sorted array, trees, hashes
- fast only when $|\Phi_{\neq 0}(\mathbf{z})| \sim dim(\mathbf{z})$

Introduction and Motivation

COFFIN really is just two simple ideas:

On demand compute...

- Features $\Phi(\mathbf{x})$ (only non-zero dims)
 - Non-Linearity Possible
 - Examples: Low Degree Polynomial Kernel, Spectrum Kernel, Weighted Degree Kernel
 - On-the-fly (de)compression
- Virtual Examples
 - Incorporating Invariances possible
 - Examples: Image translation, rotation, etc

Needs efficient data structure for w!

- ..., dense, sorted array, trees, hashes
- fast only when $|\Phi_{\neq 0}(\mathbf{z})| \sim dim(\mathbf{z})$

Data Structures

Effort of **ADD** and **DOT** for **z** and memory requirement of **w**.

	Dense	Sorted Array	Tree
Add	$\mathcal{O}(\Phi_{\neq 0}(\mathbf{z}))$	$\mathcal{O}(\mathbf{w} _{ eq 0}) + \Phi_{ eq 0}(\mathbf{z}))$	$\mathcal{O}(\Phi_{ eq 0}(\mathbf{z}))$
			to $\mathcal{O}(K\Phi_{\neq 0}(\mathbf{z}))$
Dot	$\mathcal{O}(\Phi_{\neq 0}(\mathbf{z}))$	$\mathcal{O}(\mathbf{w} _{\neq 0}) + \Phi_{\neq 0}(\mathbf{z}))$	$\mathcal{O}(\Phi_{\neq 0}(\mathbf{z}))$
			to $\mathcal{O}(K\Phi_{\neq 0}(\mathbf{z}))$
Mem	$\mathcal{O}(n)$	$\mathcal{O}(\sum_{i=1}^{m} \Phi_{\neq 0}(\mathbf{z}_i))$	$\mathcal{O}(\sum_{i=1}^{m} \Phi_{\neq 0}(\mathbf{z}_i))$

Sparse data structures have huge overhead!

Hashing to the Rescue (Shi et al (2009))

- Always use dense w with "compressed index"
- Hash function $h(J) \mapsto 1, \dots, 2^{\gamma}$,
- $(\widehat{\Phi}(\mathbf{z}))_j = \sum_{i \in J: h(i) = i} (\Phi(\mathbf{z}))_i$

Data Structures

Effort of **ADD** and **DOT** for **z** and memory requirement of **w**.

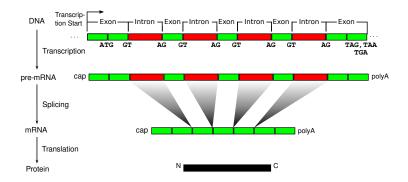
	Dense	Sorted Array	Tree
Add	$\mathcal{O}(\Phi_{\neq 0}(\mathbf{z}))$	$\mathcal{O}(\mathbf{w} _{ eq 0}) + \Phi_{ eq 0}(\mathbf{z}))$	$\mathcal{O}(\Phi_{ eq 0}(\mathbf{z}))$
			to $\mathcal{O}(K\Phi_{ eq 0}(\mathbf{z}))$
Dot	$\mathcal{O}(\Phi_{\neq 0}(\mathbf{z}))$	$\mathcal{O}(\mathbf{w} _{\neq 0}) + \Phi_{\neq 0}(\mathbf{z}))$	$\mathcal{O}(\Phi_{ eq 0}(\mathbf{z}))$
			to $\mathcal{O}(K\Phi_{ eq 0}(\mathbf{z}))$
Mem	$\mathcal{O}(n)$	$\mathcal{O}(\sum_{i=1}^{m} \Phi_{\neq 0}(\mathbf{z}_i))$	$\mathcal{O}(\sum_{i=1}^m \Phi_{\neq 0}(\mathbf{z}_i))$

Sparse data structures have huge overhead!

Hashing to the Rescue (Shi et al (2009))

- Always use dense w with "compressed index"
- Hash function $h(J) \mapsto 1, \dots, 2^{\gamma}$,
- $\bullet (\widehat{\Phi}(\mathbf{z}))_j = \sum_{i \in J: h(i) = i} (\Phi(\mathbf{z}))_i$

Splice Site Predictions



Application to Human Acceptor Splice Site Prediction

Splice Site Prediction

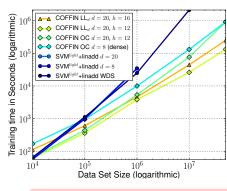
Discriminate true signal positions against all other positions

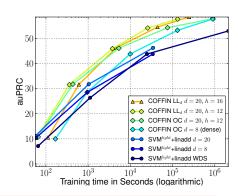
 \approx 150 nucleotides window around dimer

- True sites: fixed window around a true site
- Decoy sites: all other consensus sites

- 50 million training examples
- COFFIN with kernels: weighted spectrum and weighted degree (explicit and hashed representation) $\approx 200,000,000$ dims

Results



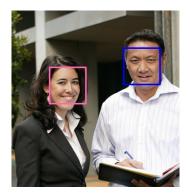


It's fast and works!

- \bullet Factor 47 faster on $10 \cdot 10^6$ examples than linadd
- New state-of-the-art results auPRC 58.57% vs. 53.01%

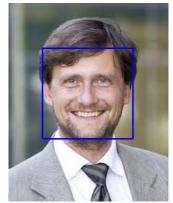
Gender Classification

Distinguish Females from Males solely based on Faces



- learn COFFIN on labelled faces
- virtual examples: translation, rotation, scale
- train ≈ 5 million sample (that would require 50GB) on Vojtechs notebook

Results I



It's fast and works - again!

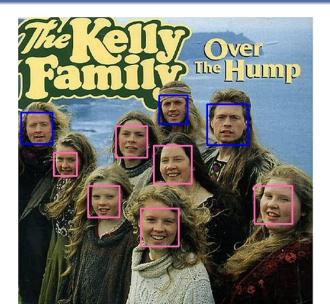
- auROC 95.44%
- (vs. auROC 89.57% without VE)

Klaus-Robert Müller is a male!

Results II

Results III

Results IV



Applications

Conclusions

COFFIN: Computational Framework for Linear SVMs

- Allows non-linearity
- Applicable to huge datasets
- General and often state-of-the art detectors

Datasets, Scripts, Efficient implementation

- Data and Scripts http://sonnenburgs.de/soeren/coffin
- Implementation http://www.shogun-toolbox.org
- More machine learning software http://mloss.org

Discussion

- Training on $\approx 2 \cdot 10^8$ dimensional $5 \cdot 10^7$ sample feasible
- Drastically reduced memory requirements; depending on features speed gain or speed penalty

