Introduction	Sequence	Classification

Large Scale Learning

Explanation and Visualization

Discussion

Genomic Signal Detection ... using Support Vector Machines

Sören Sonnenburg TU Berlin

joint work with Alexander Zien, Jonas Behr, Gabriele Schweikert, Konrad Rieck, Petra Philips, Gunnar Rätsch, Vojtech Franc

Introduction 00000	Sequence Classification	Large Scale Learning	Explanation and Visualization	Discussion
Outline				

- 2 Sequence Classification
- 3 Large Scale Learning
- Explanation and Visualization

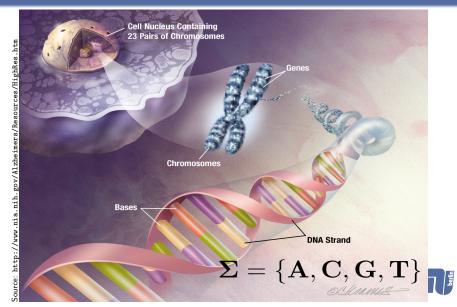
Introduction 00000	Sequence Classification	Large Scale Learning	Explanation and Visualization	Discussion

Outline

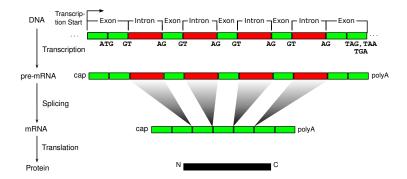
- Sequence Classification
 - Support Vector Machines
 - String Kernels
 - Example
- 3 Large Scale Learning
 - Application TSS recognition
- ④ Explanation and Visualization
 - Introduction
 - Definition
 - Applications

Introduction	Sequence Classification	Large Scale Learning	Explanation and Visualization

Genome



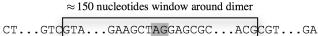
Genomic	Signals			
Genomic Signals				
Introduction •0000	Sequence Classification	Large Scale Learning	Explanation and Visualization	Discussion



Genomic Signal Detection

- Start/Stop of Genes
- Donor Splice Site (Exon-Intron-Boundary)
- Acceptor Splice Site (Intron-Exon-Boundary)

Discriminate true signal positions against all other positions



• True sites: fixed window around a true site

• Decoy sites: all other consensus sites

AAACAAATAAGTAACTAATCTTTTAGGAAGAACGTTTCAACCATTTTGAG AAGATTAAAAAAAACAAATTTTTAGCATTACAGATATAATAATCTAATT CACTCCCCAAATCAACGATATTTTAGTTCACTAACACATCCGTCTGTGCC TTAATTTCACTTCCACATACTTCCAGATCATCACCAAAACCAAAACCAACAC TTGTTTTAATATTCAATTTTTACAGTAAGTTGCCAATTCAATGTTCCAC TACTTAATTATGAAATTAAAATTCAGTGTGCCGATGGAAAACGGAGAAGTC

Examples: Transcription start site finding, splice site prediction, alternative splicing prediction, trans-splicing, polyA signal

Sequence Classification

Large Scale Learning

Explanation and Visualization

Discussion

Genomic Signals

Types of Signal Detection Problems I

Vague categorization

(based on positional variability of motifs)

Position Independent

 \rightarrow Motifs may occur anywhere,

x AAACAAATAAGTAACTAATCTTTTAGGAAGAACGTTTCAACCATTTTGAG

x' TACCTAATTATGAAATTAAATTTCAGTGTGCTGATGGAAACGGAGAAGTC

e.g. tissue classification using promotor region

Sequence Classification

Large Scale Learning

Explanation and Visualization

Discussion

Genomic Signals

Types of Signal Detection Problems II

Vague categorization

(based on positional variability of motifs)

Position Dependent

 \rightarrow Motifs very stiff, almost always at same position,

e.g. Splice Site Classification

Introduction 0000● Sequence Classification

Large Scale Learning

Explanation and Visualization

Discussion

Genomic Signals

Types of Signal Detection Problems III

Vague categorization

(based on positional variability of motifs)

Mixture Position Dependent/Independent

 \rightarrow variable but still positional information

e.g. Promoter Classification

Introduction	

Sequence Classification

Large Scale Learning

Explanation and Visualization

Discussion

Outline

- Genomic Signals
- 2 Sequence Classification
 - Support Vector Machines
 - String Kernels
 - Example
- 3 Large Scale Learning
 - Application TSS recognition
- 4 Explanation and Visualization
 - Introduction
 - Definition
 - Applications

Sequence Classification

Large Scale Learning

Explanation and Visualization

Discussion

Support Vector Machines

Classification - Learning based on examples

Given:

Training examples
$$(\mathbf{x}_i, y_i)_{i=1}^N \in (\{A, C, G, T\}^L, \{-1, +1\})^N$$

(≈ 1 billion neg. sequences; < 200.000 positive sequences)

Wanted:

(

Function (Classifier) $f(\mathbf{x}) : \{A, C, G, T\}^L \mapsto \{-1, +1\}$

 $\approx\!150$ nucleotides window around dimer

Aim: Accurate signal prediction for the whole genome

Sequence Classification

Large Scale Learning

Explanation and Visualization

Discussion

Support Vector Machines

Classification - Learning based on examples

Given:

Training examples
$$(\mathbf{x}_i, y_i)_{i=1}^{N} \in (\{A, C, G, T\}^L, \{-1, +1\})^N$$

(≈ 1 billion neg. sequences; < 200.000 positive sequences)

Wanted:

Function (Classifier) $f(\mathbf{x}) : \{A, C, G, T\}^L \mapsto \{-1, +1\}$

 \approx 150 nucleotides window around dimer CT...GTOGTA...GAAGCTAGGAGCGC...ACGCGT...GA

Aim: Accurate signal prediction for the whole genome

Sequence Classification

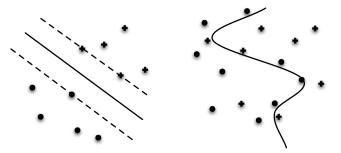
Large Scale Learning

Explanation and Visualization

Discussion

Support Vector Machines

Support Vector Machines (SVMs)



 Support Vector Machines learn weights α ∈ ℝ^N over training examples in kernel feature space Φ : x → ℝ^D,

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{N} y_i \alpha_i \mathsf{k}(\mathbf{x}, \mathbf{x}_i) + b\right),$$

with kernel $k(\mathbf{x}, \mathbf{x}') = \Phi(\mathbf{x}) \cdot \Phi(\mathbf{x}')$

Sequence Classification

Large Scale Learning

Explanation and Visualization

Discussion

String Kernels

The Spectrum Kernel (Leslie et al. 2002)

Support Vector Machine

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{N} y_i \alpha_i \mathbf{k}(\mathbf{x}, \mathbf{x}_i) + b\right),$$

Spectrum Kernel (with mismatches, gaps)

$$\mathcal{K}(\boldsymbol{x},\boldsymbol{x}') = \Phi_{\textit{sp}}(\boldsymbol{x}) \cdot \Phi_{\textit{sp}}(\boldsymbol{x}')$$

Example k = 3:

- x AAACAAATAAGTAACTAATCTTTTAGGAAGAACGTTTCAACCATTTTGAG
- x' TACCTAATTATGAAATTAAATTTCAGTGTGCTGATGGAAACGGAGAAGTC

3-mer	AAA	AAC	 CCA	CCC	 TTT
# in x	2	4	 1	0	 3
# in x ′	3	1	 0	0	 1

$$\mathbf{k}(\mathbf{x},\mathbf{x}') = 2 \cdot 3 + 4 \cdot 1 + \dots 1 \cdot 0 + 0 \cdot 0 \dots 3 \cdot 1$$

Introduction	Sequence Classification	Large Scale Learning	Explanation and Visualization
	000000		

Discussion

String Kernels

The Weighted Degree Kernel (Sonnenburg et al. 2005)

Support Vector Machine

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{N} y_i \alpha_i \mathbf{k}(\mathbf{x}, \mathbf{x}_i) + b\right),\,$$

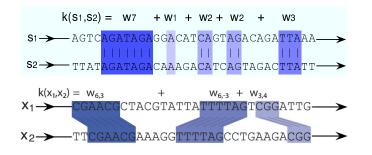
$$\mathbf{k}(\mathbf{x},\mathbf{x}') = \sum_{k=1}^{K} \beta_k \sum_{i=1}^{L-k+1} \mathbb{I}\left\{\mathbf{x}[i]^k = \mathbf{x}'[i]^k\right\}.$$

Example: K = 3: $\mathbf{k}(\mathbf{x}, \mathbf{x}') = \beta_1 \cdot 21 + \beta_2 \cdot 8 + \beta_3 \cdot 3$

Introduction Sequence Classification Large Scale Learning Cooperation and Visualization Discussion Cooperation String Kernels The Weighted Degree Kernel with shifts (Raetsch, Sonnenburg et al. 2005)

Support Vector Machine

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{N} y_i \alpha_i \mathbf{k}(\mathbf{x}, \mathbf{x}_i) + b\right),$$

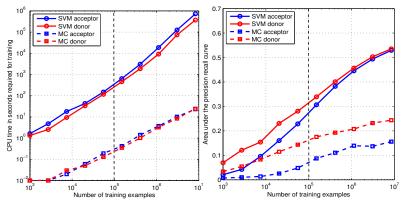


Introduction 00000	Sequence Classification	Large Scale Learning	Explanation and Visualizati
Example			

Example

First Application Splice Sites

- $\bullet\,$ Human splice sites: $5\cdot 10^7$ strings of length ≈ 141
- Note: Raw data is already 7GB in size



Aim: Train string-kernel SVM on all available data

Sequence Classification

Large Scale Learning

Explanation and Visualization

Discussion

Outline

- Genomic Signals
- 2 Sequence Classification
 - Support Vector Machines
 - String Kernels
 - Example
- 3 Large Scale Learning
 - Application TSS recognition
- ④ Explanation and Visualization
 - Introduction
 - Definition
 - Applications

Introduction 00000	Sequence Classification	Large Scale Learning	Explanation and Visualization	Dise
Packground				

The Curse of Support Vectors

SVMs deliver state-of-the-art results ... BUT...

To compute output on all M examples $\mathbf{x}_1, \ldots, \mathbf{x}_M$:

$$\forall j = 1, \dots, M: \sum_{i=1}^{N_s} \alpha_i y_i \, \mathsf{k}(\mathsf{x}_i, \mathsf{x}_j) + b$$

Computational effort:

- All $\mathcal{O}(N_s MT)$, (T time to compute the kernel)
- Effort Scales linearly with $N_s = O(N) := \#SVs$
- \Rightarrow Used in training and testing worth tuning.

\Rightarrow How to further speed up if $T = dim(\mathcal{X})$ already linear?

Introduction
00000

Linadd

Accelerating String-Kernel-SVMs

- Linear run-time of the kernel
- Accelerating linear combinations of kernels

Idea of the Linadd Algorithm (Sonnenburg et al., 2005): Store w and compute $w \cdot \Phi(x)$ efficiently

$$f(\mathbf{x}_j) = \sum_{i=1}^{N_s} \alpha_i y_i \, \mathsf{k}(\mathbf{x}_i, \mathbf{x}_j) = \underbrace{\sum_{i=1}^{N_s} \alpha_i y_i \Phi(\mathbf{x}_i)}_{\mathbf{w}} \cdot \Phi(\mathbf{x}_j) = \mathbf{w} \cdot \Phi(\mathbf{x}_j)$$

Possible for low-dimensional or sparse **Effort:** $\mathcal{O}(ML) \Rightarrow$ **speedup of factor** N_s (with $L := dim(\mathcal{X})$)

Introduction 00000	Sequence Classification	Large Scale Learning	Explanation and Visualization	Discussion
Linadd				

Technical Remark

Treating w

- w must be accessible by some index u (i.e. u = 1...4⁸ for 8-mers of Spectrum Kernel on DNA or word index for word-in-a-bag kernel)
- Needed Operations
 - Clear: **w** = **0**
 - Add: $w_u \leftarrow w_u + v$
 - Lookup: obtain w_u

(only needed |W| times per iteration) (must be highly efficient)

Storage

- Explicit Map (store dense w); Lookup in $\mathcal{O}(1)$
- Sorted Array (word-in-bag-kernel: all words sorted with value attached); Lookup in $\mathcal{O}(\log(\sum_u l(w_u \neq 0)))$
- Suffix Tries, Trees; Lookup in $\mathcal{O}(K)$

Introduction 00000	Sequence Classification	Large Scale Learning	Explanation and Visualization	Discussion
Linadd				

Technical Remark

Treating w

- w must be accessible by some index u (i.e. u = 1...4⁸ for 8-mers of Spectrum Kernel on DNA or word index for word-in-a-bag kernel)
- Needed Operations
 - Clear: $\mathbf{w} = \mathbf{0}$
 - Add: $w_u \leftarrow w_u + v$
 - Lookup: obtain w_u

(only needed |W| times per iteration) (must be highly efficient)

- Storage
 - Explicit Map (store dense w); Lookup in $\mathcal{O}(1)$
 - Sorted Array (word-in-bag-kernel: all words sorted with value attached); Lookup in $\mathcal{O}(\log(\sum_u l(w_u \neq 0)))$
 - Suffix Tries, Trees; Lookup in $\mathcal{O}(K)$

Introduction 00000	Sequence Classification	Large Scale Learning	Explanation and Visualization	Discussion
Linadd				

Technical Remark

Treating w

- w must be accessible by some index u (i.e. $u = 1 \dots 4^8$ for 8-mers of Spectrum Kernel on DNA or word index for word-in-a-bag kernel)
- Needed Operations
 - Clear: $\mathbf{w} = \mathbf{0}$

 - Lookup: obtain w_{μ}

• Add: $w_{\mu} \leftarrow w_{\mu} + v$ (only needed |W| times per iteration) (must be highly efficient)

- Storage
 - **Explicit Map** (store dense w); Lookup in $\mathcal{O}(1)$
 - Sorted Array (word-in-bag-kernel: all words sorted with value attached); Lookup in $\mathcal{O}(\log(\sum_{u} I(w_u \neq 0)))$
 - Suffix Tries, Trees; Lookup in $\mathcal{O}(K)$

Introduction
00000

Linadd

Datastructures - Summary of Computational Costs

Comparison of worst-case run-times for operations

- ${\scriptstyle \bullet}$ clear of ${\bf w}$
- $\bullet\,$ add of all k-mers u from string x to w
- \bullet lookup of all k-mers u from x^\prime in w

	Explicit map	Sorted arrays	Tries	Suffix trees
clear	$\mathcal{O}(\Sigma ^K)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
add	$\mathcal{O}(l_{x})$	$\mathcal{O}(l_{x} \log l_{x})$	$\mathcal{O}(I_{\mathbf{x}}K)$	$\mathcal{O}(l_{x})$
lookup	$\mathcal{O}(I_{\mathbf{x}'})$	$\mathcal{O}(l_{\mathbf{x}}+l_{\mathbf{x}'})$	$\mathcal{O}(I_{\mathbf{x}'}K)$	$\mathcal{O}(I_{\mathbf{x}'})$

Conclusions

- Explicit map ideal for small $|\Sigma|$
- Sorted Arrays for larger alphabets
- Suffix Arrays for large alphabets and order (overhead!)

Introduction	
00000	

Linadd

Datastructures - Summary of Computational Costs

Comparison of worst-case run-times for operations

- ${\scriptstyle \bullet}$ clear of ${\bf w}$
- $\bullet\,$ add of all k-mers u from string x to w
- \bullet lookup of all k-mers u from x^\prime in w

	Explicit map	Sorted arrays	Tries	Suffix trees
clear	$\mathcal{O}(\Sigma ^K)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
add	$\mathcal{O}(l_{x})$	$\mathcal{O}(l_{x} \log l_{x})$	$\mathcal{O}(I_{\mathbf{x}}K)$	$\mathcal{O}(l_{x})$
lookup	$\mathcal{O}(I_{\mathbf{x}'})$	$\mathcal{O}(l_{\mathbf{x}}+l_{\mathbf{x}'})$	$\mathcal{O}(I_{\mathbf{x}'}K)$	$\mathcal{O}(I_{\mathbf{x}'})$

Conclusions

- Explicit map ideal for small $|\boldsymbol{\Sigma}|$
- Sorted Arrays for larger alphabets
- Suffix Arrays for large alphabets and order (overhead!)

Introduction 00000 Linadd Sequence Classification 000000

Large Scale Learning

Explanation and Visualization

Discussion

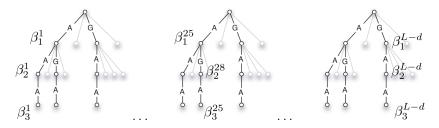
Examples: Explicit map for WD kernel

K L-k+1							
$f(\mathbf{x}) = \sum \sum w(\mathbf{x}[i]^k, i) + b$							
	k=1 $i=1$						
k-mer	pos. 1	pos. 2	pos. 3	pos. 4			
Α	+0.1	-0.3	-0.2	+0.2			
С	0.0	-0.1	+2.4	-0.2			
G	+0.1	-0.7	0.0	-0.5			
т	-0.2	-0.2	0.1	+0.5			
AA	+0.1	-0.3	+0.1	0.0			
AC	+0.2	0.0	-0.2	+0.2			
÷	:	÷	÷	÷	·		
тт	0.0	-0.1	+1.7	-0.2			
AAA	+0.1	0.0	0.0	+0.1			
AAC	0.0	-0.1	+1.2	-0.2			
÷	÷	÷	:	÷	·		
ттт	+0.2	-0.7	0.0	0.0			

Introduction 00000	Sequence Classification	Large Scale Learning	Explanation and Visualization	Discussion		
Linadd						
Examples: Suffix Tries for M/D kornel						

Examples: Suffix Tries for WD kernel

- Use one tree of depth *d* per position in sequence
- For lookup traverse tree of depth *d* at a certain position in the sequence
- Example d = 3:



Introduction 00000	Sequence Classification	Large Scale Learning ○○○○○●○○○○	Explanation and Visualization	Discussion
Linadd				
It works	! It is fast!			

Linadd speedup factor up to 100,000 when applying

Further Speedup and Efficiency Considerations

- w may still be huge \Rightarrow fix by not constructing whole w but only blocks and computing batches
- Parallelize! \Rightarrow do lookups in parallel

What about training?

- Chunking based SVMs solve reduced problem on working set
- Update rule: $f_j \leftarrow f_j^{old} + \sum_{i \in W} (\alpha_i \alpha_i^{old}) y_i \, k(x_i, x_j)$
- Fast with kernel caching but infeasible (for $N = 10^6$ only 125 kernel rows fit in 1GiB memory)
- No kernel caches necessary: Faster + Memory efficient

Training on 10 million examples \Rightarrow speedup factor up to 100 $^{+}$

Introduction 00000	Sequence Classification	Large Scale Learning ○○○○○○●○○○○	Explanation and Visualization	Discussion
Linadd				
lt works	! It is fast!			

Linadd speedup factor up to 100,000 when applying

Further Speedup and Efficiency Considerations

- w may still be huge \Rightarrow fix by not constructing whole w but only blocks and computing batches
- Parallelize! \Rightarrow do lookups in parallel

What about training?

- Chunking based SVMs solve reduced problem on working set
- Update rule: $f_j \leftarrow f_j^{old} + \sum_{i \in W} (\alpha_i \alpha_i^{old}) y_i \, \mathsf{k}(x_i, x_j)$
- Fast with kernel caching but infeasible (for $N = 10^6$ only 125 kernel rows fit in 1GiB memory)
- No kernel caches necessary: Faster + Memory efficient

Training on 10 million examples \Rightarrow speedup factor up to 100

Sequence Classification 000000

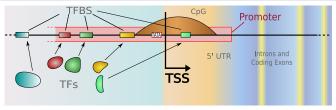
Large Scale Learning

Explanation and Visualization

Discussion

Application TSS recognition

Detecting Transcription Start Sites



Some features to describe TSS (weak)

- CpG islands (often over TSS/first exon; in most, but not all promoters)
- TSS with TATA box (pprox -30 bp upstream)
- TFBS in Promoter region, Exon content in UTR 5" region

Idea:

Combine weak features to build strong promoter predictor

 $\mathbf{k}(\mathbf{x}, \mathbf{x}') = k_{TSS}(\mathbf{x}, \mathbf{x}') + k_{CpG}(\mathbf{x}, \mathbf{x}') + k_{coding}(\mathbf{x}, \mathbf{x}') + k_{energy}(\mathbf{x}, \mathbf{x}') + k_{twist}(\mathbf{x}, \mathbf{x}')$

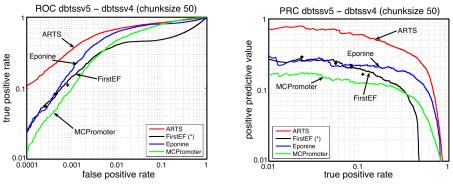
Introduction 00000	Sequence Classification	Large Scale Learning	Explanation and Visualization	Discussion
Application TSS	recognition			
The 5 s	ub-kernels			

- **①** TSS signal (including parts of core promoter with TATA box)
 - use Weighted Degree Shift kernel
- O CpG Islands, distant enhancers and TFBS upstream of TSS
 - use **Spectrum kernel** (large window upstream of TSS)
- Model coding sequence TFBS downstream of TSS
 - use another **Spectrum kernel** (small window downstream of TSS)
- Stacking energy of DNA
 - use btwist energy of dinucleotides with Linear kernel
- Twistedness of DNA
 - use btwist angle of dinucleotides with Linear kernel

Sequence Classification Introduction Large Scale Learning Explanation and Visualization Application TSS recognition

State-of-the-art Performance

Receiver Operator Characteristic and Precision Recall Curve

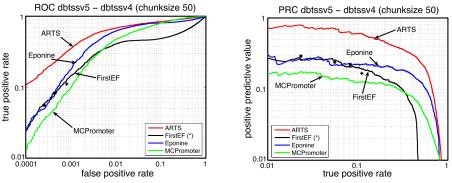


ARTS (Sonnenburg et al. 2006) twice as accurate!

Sequence Classification Introduction Large Scale Learning Explanation and Visualization Application TSS recognition

State-of-the-art Performance

Receiver Operator Characteristic and Precision Recall Curve



ARTS (Sonnenburg et al. 2006) twice as accurate!

Independent evaluation of 17 methods (Abeel et al. ISMB, 2009) TSS detector (ARTS) winner in evaluation of 17 methods.

 Introduction
 Sequence Classification
 Large Scale Learning

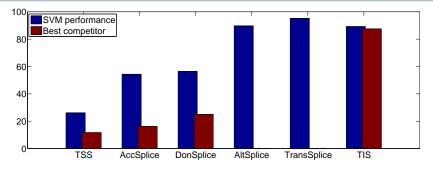
 00000
 000000
 000000●

Explanation and Visualization

Discussion

Application TSS recognition

Beauty in Generality



• Transcription Start (Sonnenburg et al., 2006/Down et al. 2002)

- Acceptor Splice Site (Sonnenburg et al., 2007/Baten et al. 2006)
- Donor Splice Site (Sonnenburg et al., 2007/Baten et al. 2006)
- Alternative Splicing (Rätsch, Sonnenburg et al., 2005/-)
- Transsplicing (Schweikert, Sonnenburg et al., 2009/-)
- Translation Initiation (Sonnenburg et al., 2008/Saeys et al., 2007)

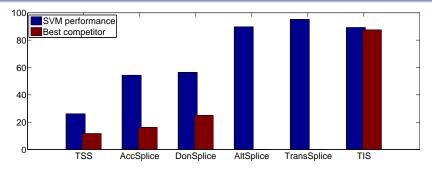
Drawback: SVM solution is hard to interpret!!

Introduction Sequence Classification Large Scale Learning

Explanation and Visualization

Application TSS recognition

Beauty in Generality



• Transcription Start (Sonnenburg et al., 2006/Down et al. 2002)

- Acceptor Splice Site (Sonnenburg et al., 2007/Baten et al. 2006)
- Donor Splice Site (Sonnenburg et al., 2007/Baten et al. 2006)
- Alternative Splicing (Rätsch, Sonnenburg et al., 2005/-)
- Transsplicing (Schweikert, Sonnenburg et al., 2009/-)
- Translation Initiation (Sonnenburg et al., 2008/Saeys et al., 2007)

Drawback: SVM solution is hard to interpret!!

Sequence Classification

Large Scale Learning

Explanation and Visualization

Discussion

Outline

Genomic Signals

- 2 Sequence Classification
 - Support Vector Machines
 - String Kernels
 - Example
- 3 Large Scale Learning
 - Application TSS recognition
- 4 Explanation and Visualization
 - Introduction
 - Definition
 - Applications

Sequence Classification

Large Scale Learning

Explanation and Visualization

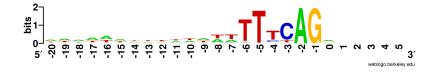
Discussion

Introduction

Understanding Support Vector Machines

Goal

For PWMs we have sequence logos:



We would like to have similar means to understand Support Vector Machines.

SVM decision function is α weighting of training points

$$s(\mathbf{x}) = \sum_{i=1}^{N} rac{lpha_i}{y_i} \mathsf{k}(\mathbf{x}_i, \mathbf{x}) + b$$

- $\alpha_1 \cdot \textbf{AAACAAATAAGTAACTAATCTTTTAGGAAGAACGTTTCAACCATTTTGAG}$
- α_2 · AAGATTAAAAAAAAAAAAAAAAATTTTTAGCATTACAGATATAATAATAATCTAATT
- $\alpha_{3} \cdot \textbf{CACTCCCCAAATCAACGATATTTTAGTTCACTAACACATCCGTCTGTGCC}$

 α_N · TTAATTTCACTTCCACATACTTCCAGATCATCAATCTCCAAAACCAACAC

But we are interested in weights over features.

equence Classification

Large Scale Learning 00000000000 Explanation and Visualization

Discussion

Introduction

SVM Scoring Function

$$\mathbf{w} = \sum_{i=1}^{N} \boldsymbol{\alpha}_{i} y_{i} \Phi(\mathbf{x}_{i}) \qquad s(\mathbf{x}) := \sum_{k=1}^{K} \sum_{i=1}^{L-k+1} w(\mathbf{x}[i]^{k}, i) + b$$

k-mer	pos. 1	pos. 2	pos. 3	pos. 4	
Α	+0.1	-0.3	-0.2	+0.2	
С	0.0	-0.1	+2.4	-0.2	
G	+0.1	-0.7	0.0	-0.5	
Т	-0.2	-0.2	0.1	+0.5	
AA	+0.1	-0.3	+0.1	0.0	•••
AC	+0.2	0.0	-0.2	+0.2	
:	÷	÷	÷	÷	•
тт	0.0	-0.1	+1.7	-0.2	
ΑΑΑ	+0.1	0.0	0.0	+0.1	
AAC	0.0	-0.1	+1.2	-0.2	
:	÷	:	:	:	·
ттт	+0.2	-0.7	0.0	0.0	

Introduction 00000	Sequence Classification	Large Scale Learning	Explanation and Visualization	Discussion
Introduction				
The Sco	ring System -	Fyamples		

The Scoring System - Examples

$$s(\mathbf{x}) := \sum_{k=1}^{K} \sum_{i=1}^{L-k+1} w\left(\mathbf{x}[i]^k, i\right) + b$$

Examples:

- WD-kernel (Rätsch, Sonnenburg, 2005)
- WD-kernel with shifts (Rätsch, Sonnenburg, 2005)
- Spectrum kernel (Leslie, Eskin, Noble, 2002)
- Oligo Kernel (Meinicke et al., 2004)

Not limited to SVM's:

• Markov Chains (higher order/inhomogeneous/mixed order)

Sequence Classification

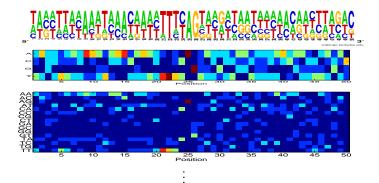
Large Scale Learning

Explanation and Visualization

Discussion

Introduction

The SVM Weight Vector w



- Explicit representation of **w** allows for (some) interpretation!
- String kernel SVMs capable of efficiently dealing with large k-mers k > 10

But: Weights for substrings not independent

Sequence Classification

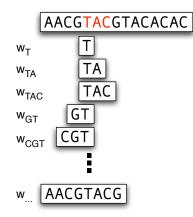
Large Scale Learning

Explanation and Visualization

Discussion

Introduction

Interdependence of k-mer Weights



What is the score for TAC?

- Take *w_{TAC}*?
- But substrings and overlapping strings contribute too!

Problem

The SVM-w does NOT reflect the score for a motif

Introduction 00000	Sequence Classification	Large Scale Learning	Explanation and Visualization	Discussion
Definition				
			()	

Positional Oligomer Importance Matrices (POIMs)

Idea:

• Given k-mer **z** at position j in the sequence, compute expected score $\mathbb{E}[s(\mathbf{x}) | \mathbf{x}[j] = \mathbf{z}]$ (for small \mathbf{k})

• Normalize with expected score over all sequences

POIMs (Sonnenburg et al. 2008) $Q(\mathbf{z}, j) := \mathbb{E}[s(\mathbf{x}) | \mathbf{x}[j] = \mathbf{z}] - \mathbb{E}[s(\mathbf{x})]$

\Rightarrow Needs efficient algorithm for computation

Introduction 00000	Sequence Classification	Large Scale Learning	Explanation and Visualization	Discussion
Definition				
Efficien	t Computation			

Effort of naive approach exponential $\mathcal{O}(|\Sigma|^{L} + L|\Sigma|^{k})$ (e.g. Splice Sites 10¹²⁰)

$$Q(\mathbf{z},j) := \mathbb{E}\left[s(\mathbf{x}) \mid \mathbf{x}[j] = \mathbf{z}\right] - \mathbb{E}\left[s(\mathbf{x})\right]$$

- Number of k-mers grows linearly with size of input
- Only features which are dependent on (z, j) matter
- Computation can be split in contributions from 4 cases

Efficient Recursive Algorithm:Effort linear in length of input: $\mathcal{O}(LN + L|\Sigma|^k)$

roduction	Sequence	Classification

Large Scale Learning

Explanation and Visualization

Discussion

Definition

Deriving an Efficient Algorithm

All features which are independent of (z, j) vanish

$$Q(\mathbf{z}, j) := \mathbb{E} \left[s(\mathbf{x}) \mid \mathbf{x}[j] = \mathbf{z} \right] - \mathbb{E} \left[s(\mathbf{x}) \right].$$

$$= \sum_{(\mathbf{y}, i) \in \mathcal{I}} w(\mathbf{y}, i) \left[Pr(\mathbf{x}[i] = \mathbf{y} \mid \mathbf{x}[j] = \mathbf{z}) - Pr(\mathbf{x}[i] = \mathbf{y}) \right]$$

$$= u(\mathbf{z}, j) - \sum_{\mathbf{z}' \in \Sigma^{|\mathbf{z}|}} Pr(\mathbf{x}[j] = \mathbf{z}') u(\mathbf{z}', j)$$

Computation can be split in contributions from 4 cases:

$$\begin{aligned} u(\mathbf{z},j) &:= \sum_{(\mathbf{y},i)\in\mathcal{I}(\mathbf{z},j)} \Pr\left(\mathbf{x}\left[i\right] = \mathbf{y} \mid \mathbf{x}\left[j\right] = \mathbf{z}\right) w(\mathbf{y},i) \\ &= u^{\vee}(\mathbf{z},j) + u^{\wedge}(\mathbf{z},j) + u^{<}(\mathbf{z},j) + u^{>}(\mathbf{z},j) - w(\mathbf{z},j) , \end{aligned}$$

 Imatacgtac
 Imatacgtac
 Imatacgtac
 Imatacgtac

 For AATACGTAC:
 substring, superstring, left and right partial overlap

Introduction 00000	Sequence Classification	Large Scale Learning	Explanation and Visualization	Discussion
Definition				

Efficient Recursive Algorithm

$$\begin{split} u^{\vee}(\sigma \mathbf{z}\tau, j) &= w_{(\sigma \mathbf{z}\tau, j)} + u^{\vee}(\sigma \mathbf{z}, j) + u^{\vee}(\mathbf{z}\tau, j+1) - u^{\vee}(\mathbf{z}, j+1) \quad \text{for } \sigma, \tau \in \Sigma \\ u^{\wedge}(\mathbf{z}, j) &= w_{(\mathbf{z}, j)} - \sum_{(\sigma, \tau) \in \Sigma^{2}} \Pr\left(\mathbf{x}[j-1] = \sigma\right) \Pr\left(\mathbf{x}[j+k] = \tau\right) u^{\wedge}(\sigma \mathbf{z}\tau, j-1) \\ &+ \sum_{\sigma \in \Sigma} \Pr\left(\mathbf{x}[j-1] = \sigma\right) u^{\wedge}(\sigma \mathbf{z}, j-1) + \sum_{\tau \in \Sigma} \Pr\left(\mathbf{x}[j+p] = \tau\right) u^{\wedge}(\mathbf{z}\tau, j) \\ u^{<}(\mathbf{z}, j) &= \sum_{\sigma \in \Sigma} \Pr\left(\mathbf{x}[j-1] = \sigma\right) \sum_{l=1}^{\min\{k, K\}-1} L\left(\sigma(\mathbf{z}[1]^{l}), j-1\right) \\ u^{>}(\mathbf{z}, j) &= \sum_{\tau \in \Sigma} \Pr\left(\mathbf{x}[j+k] = \tau\right) \sum_{l=1}^{\min\{k, K\}-1} R\left(\mathbf{z}[k-l+1]^{l}\tau, j+p-l\right) , \end{split}$$

$$L(\mathbf{z}, j) = w_{(\mathbf{z}, j)} + \sum_{\sigma \in \Sigma} Pr(\mathbf{x}[j-1] = \sigma) L(\sigma \mathbf{z}, j-1)$$
$$R(\mathbf{z}, j) = w_{(\mathbf{z}, j)} + \sum_{\tau \in \Sigma} Pr(\mathbf{x}[j+p] = \tau) R(\mathbf{z}\tau, j)$$

Introduction 00000	Sequence Classification	Large Scale Learning	Explanation and Visualization	Discu
Definition				

Ranking Features and Condensing Information

- Obtain highest scoring z from Q(z, i) (Enhancer or Silencer)
- Visualize POIM as heat map; x-axis: position y-axis: k-mer color: importance
- For large k: Differential POIMs; x-axis: position y-axis: k-mer length color: importance

z	i	$Q(\mathbf{z}, i)$
GATTACA	10	+30
AGTAGTG	30	+20
AAAAAA	10	-10

Sequence Classification

Large Scale Learning

Explanation and Visualization

Discussion

Applications

GATTACA and AGTAGTG at Fixed Positions 10 and 30

TGAGCGCGT<mark>GATTACA</mark>GTCCGTCTGGGCCA<mark>GTAGTG</mark>CGTAGTCGCCGGGA GGCATGGTC<mark>GATTACA</mark>AACGAGCCCTCTC<mark>AGTAGTG</mark>GGGGAGCCACGAAA CCCGTCGAA<mark>GATTACA</mark>CACGGGGGCGTGGG<mark>AGTAGTG</mark>GCGATTACGGGCTC GGTCGGCAG<mark>GATTACA</mark>CGACGCGTTTACG<mark>AGTAGTG</mark>AACACTGACTCCTC

Sequence Classification

Large Scale Learning

Explanation and Visualization

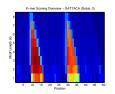
Discussion

Applications

w

GATTACA and AGTAGTG at fixed positions 10 and 30

TGAGCGCGT<mark>GATTACA</mark>GTCCGTCTGGGCC<mark>AGTAGTG</mark>CGTAGTCGCCGGGA GGCATGGTC<mark>GATTACA</mark>AACGAGCCCTCTC<mark>AGTAGTG</mark>GGGGAGCCACGAAA CCCGTCGAA<mark>GATTACA</mark>CACGGGGGCGTGGG<mark>AGTAGTG</mark>GCGATTACGGGCTC GGTCGGCAG<mark>GATTACA</mark>CGACGCGTTTACG<mark>AGTAGTG</mark>AACACTGACTCCTC



Sequence Classification

Large Scale Learning

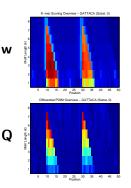
Explanation and Visualization

Discussion

Applications

GATTACA and AGTAGTG at fixed positions 10 and 30

TGAGCGCGT<mark>GATTACA</mark>GTCCGTCTGGGCC<mark>AGTAGTG</mark>CGTAGTCGCCGGGA GGCATGGTC<mark>GATTACA</mark>AACGAGCCCTCTC<mark>AGTAGTG</mark>GGGGAGCCACGAAA CCCGTCGAA<mark>GATTACA</mark>CACGGGGCGTGGG<mark>AGTAGTG</mark>GCGATTACGGGCTC GGTCGGCAG<mark>GATTACA</mark>CGACGCGTTTACG<mark>AGTAGTG</mark>AACACTGACTCCTC



Sequence Classification

Large Scale Learning

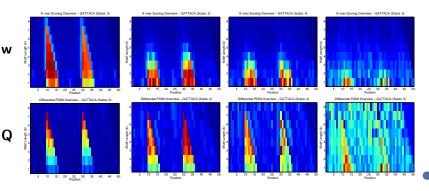
Explanation and Visualization

Discussion

Applications

GATTACA and AGTAGTG at fixed positions 10 and 30

TGAGCGCGT<mark>GATTACA</mark>GTCCGTCTGGGCC<mark>AGTAGTG</mark>CGTAGTCGCCGGGA GGCATGGTC<mark>GATTACA</mark>AACGAGCCCTCTC<mark>AGTAGTG</mark>GGGGAGCCACGAAA CCCGTCGAA<mark>GATTACA</mark>CACGGGGGCGTGGG<mark>AGTAGTG</mark>GCGATTACGGGCTC GGTCGGCAG<mark>GATTACA</mark>CGACGCGTTTACG<mark>AGTAGTG</mark>AACACTGACTCCTC



Sequence Classification

Large Scale Learning

Explanation and Visualization

Discussion

Applications

GATTACA at variable positions

TGAGCGCGTGATTACAGTCCGTCT GGCTCGATCACAAACGAGCCCGAT CCCGTCGAACAGGATTACACACGG GGTCGGCAGCTTACACGACAGCGT

Sequence Classification

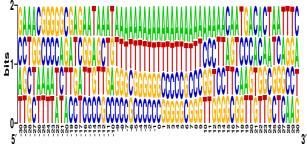
Large Scale Learning

Explanation and Visualization

Discussion

Applications

GATTACA at variable positions



weblogo.berkeley.edu

Sequence Classification

Large Scale Learning

Explanation and Visualization

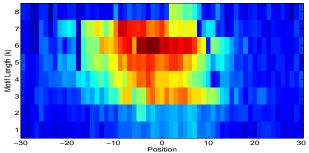
Discussion

Applications

GATTACA at variable positions

TGAGCGCGTGATTACAGTCCGTCT GGCTCGATCACAAACGAGCCCGAT CCCGTCGAACAGGATTACACACGG GGTCGGCAGCTTACACGACAGCGT

Differential POIM Overview - GATTACA shift



Introduction	
00000	

Sequence Classification

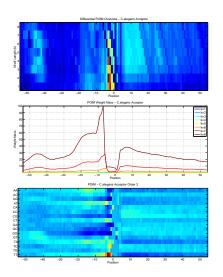
Large Scale Learning

Explanation and Visualization

Discussion

Applications

C.elegans Acceptor Splice Site Recognition



Upstream	
AG GT AAGT	_2
GGGGGG	-1
TAATAA	-1

44/++ Donor 16/- - Silencer? 16/++ Branch

• Central TTTTTTC -06/+TTTC**AG** $\frac{A}{G}$ -03/+

-03/++ Acceptor

• Downstream TTTTTTT +07/- -TTTTT +26/- -

Introduction	

Sequence Classification

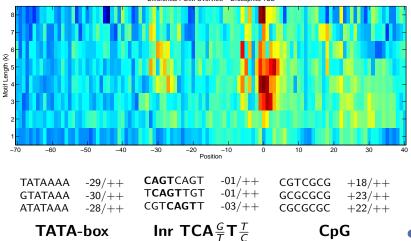
Large Scale Learning

Explanation and Visualization

Discussion

Applications

Drosophila Transcription Starts



Differential POIM Overview - Drosophila TSS

Introduction

Sequence Classification

Large Scale Learning

Explanation and Visualization

Discussion

Outline

- Genomic Signals
- 2 Sequence Classification
 - Support Vector Machines
 - String Kernels
 - Example
- 3 Large Scale Learning
 - Application TSS recognition
- ④ Explanation and Visualization
 - Introduction
 - Definition
 - Applications

Introduction 00000	Sequence Classification	Large Scale Learning	Explanation and Visualization	Discu

Conclusions

Support Vector Machines with string kernels

- General and often state-of-the art signal detectors
- Applicable to genome-sized datasets
- Using POIMs SVMs are interpretable

Efficient implementation

http://www.shogun-toolbox.org
More machine learning software http://mloss.org

Discussion

- Multiple Kernel Learning for interpretability and improving Accuracy (Sonnenburg et al. 2004; Kloft, Sonnenburg et al. 2009)
- Learn string-kernel SVMs in the primal (Sonnenburg et al. 2010)

ussion