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Genomic Signals
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Genomic Signals

Recognizing Genomic Signals

Discriminate true signal positions against all other positions

True sites: fixed window around a true site
Decoy sites: all other consensus sites

Examples: Transcription start site finding, splice site prediction,
alternative splicing prediction, trans-splicing, polyA signal
detection, translation initiation site detection
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Genomic Signals

Types of Signal Detection Problems I

Vague categorization

(based on positional variability of motifs)

Position Independent

→ Motifs may occur anywhere,

e.g. tissue classification using promotor region
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Genomic Signals

Types of Signal Detection Problems II

Vague categorization

(based on positional variability of motifs)

Position Dependent

→ Motifs very stiff, almost always at same position,

e.g. Splice Site Classification
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Genomic Signals

Types of Signal Detection Problems III

Vague categorization

(based on positional variability of motifs)

Mixture Position Dependent/Independent

→ variable but still positional information

e.g. Promoter Classification
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Support Vector Machines

Classification - Learning based on examples I

Given:

Training examples (xi , yi )
N
i=1 ∈ ({A,C ,G ,T}L, {−1,+1})N

+1

−1

+1

−1

−1

−1

(≈ 1 billion neg. sequences; < 200.000 positive sequences)

Wanted:

Function (Classifier) f (x) : {A,C ,G ,T}L 7→ {−1,+1}

Aim: Accurate signal prediction for the whole genome
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Support Vector Machines

Classification - Learning based on examples II
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Support Vector Machines

Classification - Learning based on examples III
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Support Vector Machines

Classification - Learning based on examples IV
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Support Vector Machines (SVMs) I
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Support Vector Machines (SVMs) II
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Support Vector Machines (SVMs) III
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SVMs and Kernels
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Support Vector Machines (SVMs)

Support Vector Machines learn weights α ∈ RN over
training examples in kernel feature space Φ : x 7→ RD ,

f (x) = sign

(
N∑

i=1

yiαik(x, xi ) + b

)
,

with kernel k(x, x′) = Φ(x) · Φ(x′)
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String Kernels

The Spectrum Kernel (Leslie et al. 2002)

Support Vector Machine

f (x) = sign

(
N∑

i=1

yiαik(x, xi ) + b

)
,

Spectrum Kernel (with mismatches, gaps)

K (x, x′) = Φsp(x) · Φsp(x′)

Example k = 3:

3-mer AAA AAC . . . CCA CCC . . . TTT
# in x 2 4 . . . 1 0 . . . 3

# in x′ 3 1 . . . 0 0 . . . 1

k(x, x′) = 2 · 3 + 4 · 1 + . . . 1 · 0 + 0 · 0 . . . 3 · 1
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String Kernels

The Weighted Degree Kernel (Sonnenburg et al. 2005)

Support Vector Machine

f (x) = sign

(
N∑

i=1

yiαik(x, xi ) + b

)
,

k(x, x′) =
K∑

k=1

βk

L−k+1∑

i=1

I
{

x[i ]k = x′[i ]k
}
.

2.1 String Kernels 19

x AAACAAATAAGTAACTAATCTTTTAGGAAGAACGTTTCAACCATTTTGAG

#1-mers .|.|.|||.|..||.|.|..|||.||...|....|...|||......|..
#2-mers .....||.....|.......||..|.............||..........
#3-mers .....|..............|.................|...........

y TACCTAATTATGAAATTAAATTTCAGTGTGCTGATGGAAACGGAGAAGTC

Figure 2.1.4: Example degree d = 3 : k(x,x′) = β1 · 21 + β2 · 8 + β3 · 3

of the substring.6

Figure 2.1.5: Given two sequences x1 and x2 of equal length, our kernel consists of a weighted sum
to which each match in the sequences makes a contribution rb depending on its length b, where longer
matches contribute more significantly.

Note that the WD kernel can be understood as a Spectrum kernel where the k-mers
starting at different positions are treated independently of each other.7 Moreover, it
does not only consider substrings of length exactly d, but also all shorter matches.

Hence, the feature space for each position has
∑d

k=1 |Σ|k = |Σ|d+1−1
|Σ|−1 − 1 dimensions

and is additionally duplicated L times (leading to O(L|Σ|d) dimensions). However, the
computational complexity of the WD kernel is in the worst case O(dL) as can be directly
seen from Eq. (2.1.7).

2.1.8 Weighted Degree Kernel with Mismatches

In this paragraph we briefly discuss an extension of the WD kernel that considers mis-
matching k-mers.
We propose to use the following kernel

k(xi,xj) =
d∑

k=1

M∑

m=0

βk,m

L−k+1∑

l=1

I(uk,l(xi) 6=m uk,l(xj)),

where u 6=m u′ evaluates to true if and only if there are exactly m mismatches between
u and u′. When considering k(u,u′) as a function of u′, then one would wish that full
matches are fully counted while mismatching u′ sequences should be less influential, in
particular for a large number of mismatches. If we choose βk,m = βk/ (( k

m ) (|Σ| − 1)m)

6Note that although in our case βk+1 < βk, longer matches nevertheless contribute more strongly than
shorter ones: this is due to the fact that each long match also implies several short matches, adding
to the value of Eq. (2.1.7). Exploiting this knowledge allows for a O(L) reformulation of the kernel
using “block-weights” as has been done in Sonnenburg et al. (2005b).

7It therefore is very position dependent and does not tolerate any positional “shift”. For that reason
we proposed in Rätsch et al. (2005) a WD kernel with shifts, which tolerates a small number of shifts,
that lies in between the WD and the Spectrum kernel.

Example: K = 3 : k(x, x′) = β1 · 21 + β2 · 8 + β3 · 3
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String Kernels

The Weighted Degree Kernel with shifts
(Raetsch, Sonnenburg et al. 2005)

Support Vector Machine

f (x) = sign

(
N∑

i=1

yiαik(x, xi ) + b

)
,

A G T C A G A T A G A G G A C A T C A G T A G A C A G A T T A A A| | | | | | | | | | | | | |T T A T A G A T A G A C A A A G A C A T C A G T A G A C T T A T T
k ( s 1 , s 2 ) = w 7 + w 1 + w 2 + w 2 + w 3s 1s 2
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Large Scale Learning

Accelerating String-Kernel-SVMs

Aim: Train and apply string-kernel SVM on all available data

1 Linear run-time of the kernel

2 Accelerating linear combinations of kernels

Idea of the Linadd Algorithm (Sonnenburg et al., 2005):

Store w and compute w · Φ(x) efficiently

f (xj) =
Ns∑

i=1

αiyi k(xi , xj) =
Ns∑

i=1

αiyiΦ(xi )

︸ ︷︷ ︸
w

·Φ(xj) = w · Φ(xj)

Possible for low-dimensional or sparse
Effort: O(ML) ⇒ speedup of factor Ns (with L := dim(X ))
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Large Scale Learning

General Recipe — Howto

Collect Data
+1

−1

+1

−1

−1

−1

What features can be used to describe “my Signal“?

Are these position independent k-mers? ⇒ Spectrum Kernel?

Are these strongly position dependent k-mers? ⇒ WD Kernel?

Are these partially position dependent k-mers? ⇒ WDK with shifts

Train SVM

split data into training, validation, test

model selection over hyperparameters C , k , s

learn final model on train+validation, estimate performance on test
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Splice Site Recognition

Splice Site Recognition

Discriminate true signal positions against all other positions

True sites: fixed window around a true splice site

Decoy sites: all other consensus sites

Create training sample from cDNA/EST alignments to
genome (for human, e.g., 50 million examples)

Sequences are compared via Weighted Degree Kernel

Train SVM on up to 8 million examples.
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Splice Site Recognition

Splice Site Recognition - Results

Human splice sites: 5 · 107 strings of length ≈ 141

Note: Raw data is already 7GB in size
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SVM ≈ 3 times more accurate than IMCs
(54.4% vs. 16.2% auPRC; Sonnenburg et al. 2007)
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Splice Site Recognition

Detecting Transcription Start Sites

POL II binds to a rather vague region of ≈ [−20,+20] bp

Upstream of TSS: promoter containing transcription factor
binding sites

Downstream of TSS: 5’ UTR, and further downstream coding
regions and introns (different statistics)

3D structure of the promoter must allow the transcription
factors to bind

⇒ Promoter Prediction is non-trivial
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TSS Recognition

Features to describe the TSS

TFBS in Promoter region

condition: DNA should not be too twisted

CpG islands (often over TSS/first exon; in most, but not all
promoters)

TSS with TATA box (≈ −30 bp upstream)

TFBS in Promoter region, Exon content in UTR 5” region

Distance to first donor splice site

Idea:
Combine weak features to build strong promoter predictor

k(x, x′)=kTSS(x, x′)+kCpG (x, x′)+kcoding (x, x′)+kenergy (x, x′)+ktwist(x, x′)
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TSS Recognition

The 5 sub-kernels

1 TSS signal (including parts of core promoter with TATA box)

– use Weighted Degree Shift kernel

2 CpG Islands, distant enhancers and TFBS upstream of TSS

– use Spectrum kernel (large window upstream of TSS)

3 Model coding sequence TFBS downstream of TSS

– use another Spectrum kernel (small window downstream
of TSS)

4 Stacking energy of DNA

– use btwist energy of dinucleotides with Linear kernel

5 Twistedness of DNA

– use btwist angle of dinucleotides with Linear kernel
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TSS Recognition

Training – Data Generation

Training and Validation Data (50% : 50%)

True TSS (8508 positive)

From dbTSSv4 (based on hg16) extract putative TSS
windows of size [−1000,+1000]

Decoy TSS (85042)

Annotate dbTSSv4 with transcription-stop (via BLAT
alignment of mRNAs)

From the interior of the gene (+100bp to gene end) sample
negatives for training (10 per positive)

Fair genome-wide evaluation

Compare against FirstEF, McPromoter, Eponine

Only consider “new” TSS from dbTSSv5-dbTSSv4, with max
30% overlap
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TSS Recognition

State-of-the-art Performance

Receiver Operator Characteristic and Precision Recall Curve

ARTS (Sonnenburg et al. 2006) twice as accurate!

Independent evaluation of 17 methods (Abeel et al. ISMB, 2009)
TSS detector (ARTS) winner in evaluation of 17 methods.
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TSS Recognition

Beauty in Generality

    TSS     AccSplice  DonSplice  AltSplice TransSplice     TIS    
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SVM performance
Best competitor

Transcription Start (Sonnenburg et al., 2006/Down et al. 2002)

Acceptor Splice Site (Sonnenburg et al., 2007/Baten et al. 2006)

Donor Splice Site (Sonnenburg et al., 2007/Baten et al. 2006)

Alternative Splicing (Rätsch, Sonnenburg et al., 2005/-)

Transsplicing (Schweikert, Sonnenburg et al., 2009/-)

Translation Initiation (Sonnenburg et al., 2008/Saeys et al., 2007)

SVM with string kernel often most accurate method.
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Gene Finding - mGene

Individual Signal Predictions in UCSC Browser

(Raetsch, Sonnenburg et al. 2007, Schweikert et al. 2009)
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Gene Finding - mGene

Individual Signal Predictions in UCSC Browser

(Raetsch, Sonnenburg et al. 2007, Schweikert et al. 2009)



Introduction Sequence Classification Support Vector Machines Applications Explanation and Visualization Summary

Gene Finding - mGene

Individual Signal Predictions in UCSC Browser

Signals have to appear in the right order

TSS TIS cleaveStop

Don Acc

Based on known genes, learn how to combine pre-
dictions for accurate gene prediction.

⇒ Prediction of “Structured Outputs”

(Raetsch, Sonnenburg et al. 2007, Schweikert et al. 2009)
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Gene Finding - mGene

Results using mGene (Schweikert et al. 2009)

Most accurate ab initio method in the nGASP genome
annotation challenge for C. elegans

Validation of gene predictions for C. elegans:

No. of genes No. of genes Frac. of genes
analyzed w/ expression

New genes 2,197 57 ≈ 42%
Missing unconf. genes 205 24 ≈ 8%

Annotation of other nematode genomes:
Genome Genome No. of No. exons/gene mGene best other

size [Mbp] genes (mean) accuracy accuracy

C. remanei 235.94 31503 5.7 96.6% 93.8%
C. japonica 266.90 20121 5.3 93.3% 88.7%
C. brenneri 453.09 41129 5.4 93.1% 87.8%
C. briggsae 108.48 22542 6.0 87.0% 82.0%

Web service for ab initio gene predictions

http://www.wormbase.org/wiki/index.php/NGASP
http://www.wormbase.org/wiki/index.php/NGASP
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Aligning Short Reads - QPALMA

mRNA Deep Sequencing

[Wikipedia]
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Aligning Short Reads - QPALMA

RNA-Seq Read Alignment

...ACGGTGGTCAATGTACCTTAAATGGTGTAAATTTGACCACACGTGAAGAGAGCCCTCC...

ACGGTGGTCAATGTACCTTAAATGGTGT
GTCAATGTACCTTAAATGGTGTAAATTTG

ATGGTGTAAATTTGACCACACGTGAAGA

coverage

0
1
2
3

RNA-Seq data

gene structure
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Aligning Short Reads - QPALMA

RNA-Seq Read Alignment
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Aligning Short Reads - QPALMA

RNA-Seq Read Alignment
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Gene structure
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Aligning Short Reads - QPALMA

Extended Smith-Waterman Algorithm (De Bona et al. 2008)

⇒ Combine heterogeneous evidence for accurate alignment

Classical scoring f : Σ× Σ→ R

Source of Information

Sequence matches

Computational splice
site predictions

Intron length model

Read quality
information
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Aligning Short Reads - QPALMA
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Aligning Short Reads - QPALMA

Extended Smith-Waterman Algorithm (De Bona et al. 2008)

⇒ Combine heterogeneous evidence for accurate alignment

Quality scoring f : (Σ× R)× Σ→ R (De Bona et al. 2008)

Source of Information

Sequence matches

Computational splice
site predictions

Intron length model

Read quality
information
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Aligning Short Reads - QPALMA

QPalma’s Accurate Alignments (De Bona et al. 2008)

Generate set of artificially spliced reads

Genomic reads with quality information

Genome annotation for artificially splicing the reads

Use 10, 000 reads for training and 30, 000 for testing

SmithW Intron Intron+Splice Intron+Splice
   +Quality

A
lig

nm
en

t  
Er

ro
r  

Ra
te

14.19% 9.96% 1.94% 1.78%
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Outline
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Introduction

Understanding Support Vector Machines

Goal

For PWMs we have sequence logos:

We would like to have similar means to
understand Support Vector Machines.
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Introduction

Why Are SVM’s Hard to Interpret?

SVM decision function is α weighting of training points

s(x) =
N∑

i=1

αiyi k(xi , x) + b

α1·
α2·
α3·
...

...
αN ·

But we are interested in weights over features.
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Introduction

SVM Scoring Function

w =
N∑

i=1

αiyiΦ(xi ) s(x) :=
K∑

k=1

L−k+1∑

i=1

w
(

x[i ]k , i
)

+ b

k-mer pos. 1 pos. 2 pos. 3 pos. 4 · · ·
A +0.1 -0.3 -0.2 +0.2 · · ·
C 0.0 -0.1 +2.4 -0.2 · · ·
G +0.1 -0.7 0.0 -0.5 · · ·
T -0.2 -0.2 0.1 +0.5 · · ·

AA +0.1 -0.3 +0.1 0.0 · · ·
AC +0.2 0.0 -0.2 +0.2 · · ·

...
...

...
...

...
. . .

TT 0.0 -0.1 +1.7 -0.2 · · ·
AAA +0.1 0.0 0.0 +0.1 · · ·
AAC 0.0 -0.1 +1.2 -0.2 · · ·

...
...

...
...

...
. . .

TTT +0.2 -0.7 0.0 0.0 · · ·
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Introduction

The Scoring System - Examples

s(x) :=
K∑

k=1

L−k+1∑

i=1

w
(

x[i ]k , i
)

+ b

Examples:

WD-kernel (Rätsch, Sonnenburg, 2005)

WD-kernel with shifts (Rätsch, Sonnenburg, 2005)

Spectrum kernel (Leslie, Eskin, Noble, 2002)

Oligo Kernel (Meinicke et al., 2004)

Not limited to SVM’s:

Markov Chains (higher order/inhomogeneous/mixed order)
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Introduction

The SVM Weight Vector w

weblogo.berkeley.edu
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...

Explicit representation of w allows for (some) interpretation!

String kernel SVMs capable of efficiently dealing with large
k-mers k > 10

But: Weights for substrings not independent



Introduction Sequence Classification Support Vector Machines Applications Explanation and Visualization Summary

Introduction

Interdependence of k−mer Weights

AACGTACGTACACAC

CGT

TA

AACGTACG

.

wT
wTA
wTAC

w...

TAC

GTwGT
wCGT

T

..

What is the score for TAC?

Take wTAC?

But substrings and
overlapping strings
contribute too!

Problem

The SVM-w does NOT reflect the score for a motif
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Definition

Positional Oligomer Importance Matrices (POIMs)

Idea:

Given k−mer z at position j in the sequence, compute
expected score E [ s(x) | x [j ] = z ] (for small k)

AAAAAAAAAATACAAAAAAAAAA
AAAAAAAAAATACAAAAAAAAAC
AAAAAAAAAATACAAAAAAAAAG

TTTTTTTTTTTACTTTTTTTTTT

...
Normalize with expected score over all sequences

POIMs (Sonnenburg et al. (2008)

Q(z, j) := E [ s(x) | x [j ] = z ] − E [ s(x) ]

⇒ Needs efficient algorithm for computation
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Definition

Efficient Computation

Effort of naive approach exponential O(|Σ|L + L|Σ|k)
(e.g. Splice Sites 10120)

Q(z, j) := E [ s(x) | x [j ] = z ] − E [ s(x) ]

Number of k-mers grows linearly with size of input

Only features which are dependent on (z, j) matter

Computation can be split in contributions from 4 cases

Efficient Recursive Algorithm:

Effort linear in length of input: O(LN + L|Σ|k)
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Definition

Ranking Features and Condensing Information

Obtain highest scoring z from
Q(z, i) (Enhancer or Silencer)

Visualize POIM as heat map;
x-axis: position
y-axis: k-mer
color: importance

For large k: Differential POIMs;
x-axis: position
y-axis: k-mer length
color: importance

z i Q(z, i)
GATTACA 10 +30
AGTAGTG 30 +20
AAAAAAA 10 -10

. . . . . . . . .

POIM − GATTACA (Subst. 0) Order 1
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Applications

GATTACA and AGTAGTG at Fixed Positions 10 and 30
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Applications

GATTACA and AGTAGTG at fixed positions 10 and 30

K−mer Scoring Overview − GATTACA (Subst. 0)
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Applications

GATTACA and AGTAGTG at fixed positions 10 and 30

K−mer Scoring Overview − GATTACA (Subst. 0)
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Applications

GATTACA and AGTAGTG at fixed positions 10 and 30

K−mer Scoring Overview − GATTACA (Subst. 0)
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K−mer Scoring Overview − GATTACA (Subst. 2)
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Applications

GATTACA at variable positions
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Applications

GATTACA at variable positions

weblogo.berkeley.edu
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Applications

GATTACA at variable positions

Differential POIM Overview − GATTACA shift
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Applications

C.elegans Acceptor Splice Site Recognition

Differential POIM Overview − C.elegans Acceptor
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Applications

Drosophila Transcription Starts

Differential POIM Overview − Drosophila TSS
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Conclusions

Support Vector Machines with String Kernels

General and often state-of-the art signal detectors

Applicable to genome-sized datasets

Using POIMs SVMs are interpretable

Software Available

TSS Detector ARTS http://mloss.org/software/view/191/

Accurate splice detector http://mloss.org/software/view/192/

mGene http://mgene.org

QPalma http://www.fml.tuebingen.mpg.de/raetsch/suppl/qpalma

ML implemented in http://www.shogun-toolbox.org

More machine learning software http://mloss.org

http://mloss.org/software/view/191/
http://mloss.org/software/view/192/
http://mgene.org
http://www.fml.tuebingen.mpg.de/raetsch/suppl/qpalma
http://www.shogun-toolbox.org
http://mloss.org
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