
Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Genomic Signal Detection
. . . using Support Vector Machines

Sören Sonnenburg
TU Berlin

joint work with
Alexander Zien, Jonas Behr, Gabriele Schweikert,

Konrad Rieck, Petra Philips, Gunnar Rätsch, Vojtech Franc



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Outline

1 Introduction

2 Sequence Classification

3 Large Scale Learning

4 Explanation and Visualization

5 Discussion



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Outline

1 Introduction
Genomic Signals

2 Sequence Classification
Support Vector Machines
String Kernels
Example

3 Large Scale Learning
Application TSS recognition

4 Explanation and Visualization
Introduction
Definition
Applications

5 Discussion



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Genome
S

o
u

rc
e:

h
t
t
p
:
/
/
w
w
w
.
n
i
a
.
n
i
h
.
g
o
v
/
A
l
z
h
e
i
m
e
r
s
/
R
e
s
o
u
r
c
e
s
/
H
i
g
h
R
e
s
.
h
t
m

http://www.nia.nih.gov/Alzheimers/Resources/HighRes.htm


Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Genomic Signals

Genomic Signals

Transcription

Splicing

. . .

C

DNA

pre-mRNA

mRNA

Protein

Transcrip-
tion Start Exon Intron Exon Exon Exon ExonIntron Intron Intron

cap

N

polyA

polyAcap

ATG TAG,TAA
TGA

GT AG GT AG GT AG GT AG

. . .

Translation

Genomic Signal Detection

Start/Stop of Genes

Donor Splice Site (Exon-Intron-Boundary)

Acceptor Splice Site (Intron-Exon-Boundary)



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Genomic Signals

Recognizing Genomic Signals

Discriminate true signal positions against all other positions

True sites: fixed window around a true site
Decoy sites: all other consensus sites

Examples: Transcription start site finding, splice site prediction,
alternative splicing prediction, trans-splicing, polyA signal
detection, translation initiation site detection



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Genomic Signals

Types of Signal Detection Problems I

Vague categorization

(based on positional variability of motifs)

Position Independent

→ Motifs may occur anywhere,

e.g. tissue classification using promotor region



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Genomic Signals

Types of Signal Detection Problems II

Vague categorization

(based on positional variability of motifs)

Position Dependent

→ Motifs very stiff, almost always at same position,

e.g. Splice Site Classification



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Genomic Signals

Types of Signal Detection Problems III

Vague categorization

(based on positional variability of motifs)

Mixture Position Dependent/Independent

→ variable but still positional information

e.g. Promoter Classification



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Outline

1 Introduction
Genomic Signals

2 Sequence Classification
Support Vector Machines
String Kernels
Example

3 Large Scale Learning
Application TSS recognition

4 Explanation and Visualization
Introduction
Definition
Applications

5 Discussion



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Support Vector Machines

Classification - Learning based on examples

Given:

Training examples (xi , yi )
N
i=1 ∈ ({A,C ,G ,T}L, {−1,+1})N

+1

−1

+1

−1

−1

−1

(≈ 1 billion neg. sequences; < 200.000 positive sequences)

Wanted:

Function (Classifier) f (x) : {A,C ,G ,T}L 7→ {−1,+1}

Aim: Accurate signal prediction for the whole genome



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Support Vector Machines

Classification - Learning based on examples

Given:

Training examples (xi , yi )
N
i=1 ∈ ({A,C ,G ,T}L, {−1,+1})N

+1

−1

+1

−1

−1

−1

(≈ 1 billion neg. sequences; < 200.000 positive sequences)

Wanted:

Function (Classifier) f (x) : {A,C ,G ,T}L 7→ {−1,+1}

Aim: Accurate signal prediction for the whole genome



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Support Vector Machines

Support Vector Machines (SVMs)

Support Vector Machines learn weights α ∈ RN over
training examples in kernel feature space Φ : x 7→ RD ,

f (x) = sign

(
N∑

i=1

yiαik(x, xi ) + b

)
,

with kernel k(x, x′) = Φ(x) · Φ(x′)



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

String Kernels

The Spectrum Kernel (Leslie et al. 2002)

Support Vector Machine

f (x) = sign

(
N∑

i=1

yiαik(x, xi ) + b

)
,

Spectrum Kernel (with mismatches, gaps)

K (x, x′) = Φsp(x) · Φsp(x′)

Example k = 3:

3-mer AAA AAC . . . CCA CCC . . . TTT
# in x 2 4 . . . 1 0 . . . 3

# in x′ 3 1 . . . 0 0 . . . 1

k(x, x′) = 2 · 3 + 4 · 1 + . . . 1 · 0 + 0 · 0 . . . 3 · 1



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

String Kernels

The Weighted Degree Kernel (Sonnenburg et al. 2005)

Support Vector Machine

f (x) = sign

(
N∑

i=1

yiαik(x, xi ) + b

)
,

k(x, x′) =
K∑

k=1

βk

L−k+1∑

i=1

I
{

x[i ]k = x′[i ]k
}
.

2.1 String Kernels 19

x AAACAAATAAGTAACTAATCTTTTAGGAAGAACGTTTCAACCATTTTGAG

#1-mers .|.|.|||.|..||.|.|..|||.||...|....|...|||......|..
#2-mers .....||.....|.......||..|.............||..........
#3-mers .....|..............|.................|...........

y TACCTAATTATGAAATTAAATTTCAGTGTGCTGATGGAAACGGAGAAGTC

Figure 2.1.4: Example degree d = 3 : k(x,x′) = β1 · 21 + β2 · 8 + β3 · 3

of the substring.6

Figure 2.1.5: Given two sequences x1 and x2 of equal length, our kernel consists of a weighted sum
to which each match in the sequences makes a contribution rb depending on its length b, where longer
matches contribute more significantly.

Note that the WD kernel can be understood as a Spectrum kernel where the k-mers
starting at different positions are treated independently of each other.7 Moreover, it
does not only consider substrings of length exactly d, but also all shorter matches.

Hence, the feature space for each position has
∑d

k=1 |Σ|k = |Σ|d+1−1
|Σ|−1 − 1 dimensions

and is additionally duplicated L times (leading to O(L|Σ|d) dimensions). However, the
computational complexity of the WD kernel is in the worst case O(dL) as can be directly
seen from Eq. (2.1.7).

2.1.8 Weighted Degree Kernel with Mismatches

In this paragraph we briefly discuss an extension of the WD kernel that considers mis-
matching k-mers.
We propose to use the following kernel

k(xi,xj) =
d∑

k=1

M∑

m=0

βk,m

L−k+1∑

l=1

I(uk,l(xi) 6=m uk,l(xj)),

where u 6=m u′ evaluates to true if and only if there are exactly m mismatches between
u and u′. When considering k(u,u′) as a function of u′, then one would wish that full
matches are fully counted while mismatching u′ sequences should be less influential, in
particular for a large number of mismatches. If we choose βk,m = βk/ (( k

m ) (|Σ| − 1)m)

6Note that although in our case βk+1 < βk, longer matches nevertheless contribute more strongly than
shorter ones: this is due to the fact that each long match also implies several short matches, adding
to the value of Eq. (2.1.7). Exploiting this knowledge allows for a O(L) reformulation of the kernel
using “block-weights” as has been done in Sonnenburg et al. (2005b).

7It therefore is very position dependent and does not tolerate any positional “shift”. For that reason
we proposed in Rätsch et al. (2005) a WD kernel with shifts, which tolerates a small number of shifts,
that lies in between the WD and the Spectrum kernel.

Example: K = 3 : k(x, x′) = β1 · 21 + β2 · 8 + β3 · 3



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

String Kernels

The Weighted Degree Kernel with shifts
(Raetsch, Sonnenburg et al. 2005)

Support Vector Machine

f (x) = sign

(
N∑

i=1

yiαik(x, xi ) + b

)
,

A G T C A G A T A G A G G A C A T C A G T A G A C A G A T T A A A| | | | | | | | | | | | | |T T A T A G A T A G A C A A A G A C A T C A G T A G A C T T A T T
k ( s 1 , s 2 ) = w 7 + w 1 + w 2 + w 2 + w 3s 1s 2



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Example

First Application Splice Sites

Human splice sites: 5 · 107 strings of length ≈ 141

Note: Raw data is already 7GB in size

Aim: Train string-kernel SVM on all available data



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Outline

1 Introduction
Genomic Signals

2 Sequence Classification
Support Vector Machines
String Kernels
Example

3 Large Scale Learning
Application TSS recognition

4 Explanation and Visualization
Introduction
Definition
Applications

5 Discussion



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Background

The Curse of Support Vectors

SVMs deliver state-of-the-art results ...BUT...

To compute output on all M examples x1, . . . , xM :

∀j = 1, . . . ,M :
Ns∑

i=1

αiyi k(xi , xj) + b

Computational effort:

All O(NsMT ), (T time to compute the kernel)

Effort Scales linearly with Ns = O(N) := #SVs

⇒ Used in training and testing - worth tuning.

⇒ How to further speed up if T = dim(X ) already linear?



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Linadd

Accelerating String-Kernel-SVMs

1 Linear run-time of the kernel

2 Accelerating linear combinations of kernels

Idea of the Linadd Algorithm (Sonnenburg et al., 2005):

Store w and compute w · Φ(x) efficiently

f (xj) =
Ns∑

i=1

αiyi k(xi , xj) =
Ns∑

i=1

αiyiΦ(xi )

︸ ︷︷ ︸
w

·Φ(xj) = w · Φ(xj)

Possible for low-dimensional or sparse
Effort: O(ML) ⇒ speedup of factor Ns (with L := dim(X ))



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Linadd

Technical Remark

Treating w

w must be accessible by some index u (i.e. u = 1 . . . 48 for
8-mers of Spectrum Kernel on DNA or word index for
word-in-a-bag kernel)

Needed Operations

Clear: w = 0
Add: wu ← wu + v (only needed |W | times per iteration)
Lookup: obtain wu (must be highly efficient)

Storage

Explicit Map (store dense w); Lookup in O(1)
Sorted Array (word-in-bag-kernel: all words sorted with value
attached); Lookup in O(log(

∑
u I (wu 6= 0)))

Suffix Tries, Trees; Lookup in O(K )



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Linadd

Technical Remark

Treating w

w must be accessible by some index u (i.e. u = 1 . . . 48 for
8-mers of Spectrum Kernel on DNA or word index for
word-in-a-bag kernel)

Needed Operations

Clear: w = 0
Add: wu ← wu + v (only needed |W | times per iteration)
Lookup: obtain wu (must be highly efficient)

Storage

Explicit Map (store dense w); Lookup in O(1)
Sorted Array (word-in-bag-kernel: all words sorted with value
attached); Lookup in O(log(

∑
u I (wu 6= 0)))

Suffix Tries, Trees; Lookup in O(K )



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Linadd

Technical Remark

Treating w

w must be accessible by some index u (i.e. u = 1 . . . 48 for
8-mers of Spectrum Kernel on DNA or word index for
word-in-a-bag kernel)

Needed Operations

Clear: w = 0
Add: wu ← wu + v (only needed |W | times per iteration)
Lookup: obtain wu (must be highly efficient)

Storage

Explicit Map (store dense w); Lookup in O(1)
Sorted Array (word-in-bag-kernel: all words sorted with value
attached); Lookup in O(log(

∑
u I (wu 6= 0)))

Suffix Tries, Trees; Lookup in O(K )



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Linadd

Datastructures - Summary of Computational Costs

Comparison of worst-case run-times for operations

clear of w

add of all k-mers u from string x to w

lookup of all k-mers u from x′ in w

Explicit map Sorted arrays Tries Suffix trees

clear O(|Σ|K ) O(1) O(1) O(1)
add O(lx) O(lx log lx) O(lxK ) O(lx)
lookup O(lx′) O(lx + lx′) O(lx′K ) O(lx′)

Conclusions

Explicit map ideal for small |Σ|
Sorted Arrays for larger alphabets

Suffix Arrays for large alphabets and order (overhead!)



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Linadd

Datastructures - Summary of Computational Costs

Comparison of worst-case run-times for operations

clear of w

add of all k-mers u from string x to w

lookup of all k-mers u from x′ in w

Explicit map Sorted arrays Tries Suffix trees

clear O(|Σ|K ) O(1) O(1) O(1)
add O(lx) O(lx log lx) O(lxK ) O(lx)
lookup O(lx′) O(lx + lx′) O(lx′K ) O(lx′)

Conclusions

Explicit map ideal for small |Σ|
Sorted Arrays for larger alphabets

Suffix Arrays for large alphabets and order (overhead!)



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Linadd

Examples: Explicit map for WD kernel

f (x) =
K∑

k=1

L−k+1∑

i=1

w
(

x[i ]k , i
)

+ b

k-mer pos. 1 pos. 2 pos. 3 pos. 4 · · ·
A +0.1 -0.3 -0.2 +0.2 · · ·
C 0.0 -0.1 +2.4 -0.2 · · ·
G +0.1 -0.7 0.0 -0.5 · · ·
T -0.2 -0.2 0.1 +0.5 · · ·

AA +0.1 -0.3 +0.1 0.0 · · ·
AC +0.2 0.0 -0.2 +0.2 · · ·

...
...

...
...

...
. . .

TT 0.0 -0.1 +1.7 -0.2 · · ·
AAA +0.1 0.0 0.0 +0.1 · · ·
AAC 0.0 -0.1 +1.2 -0.2 · · ·

...
...

...
...

...
. . .

TTT +0.2 -0.7 0.0 0.0 · · ·



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Linadd

Examples: Suffix Tries for WD kernel

Use one tree of depth d per position in sequence

For lookup traverse tree of depth d at a certain position in
the sequence

Example d = 3 :



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Linadd

It works! It is fast!

Linadd speedup factor up to 100,000 when applying

Further Speedup and Efficiency Considerations

w may still be huge ⇒ fix by not constructing whole w but
only blocks and computing batches

Parallelize! ⇒ do lookups in parallel

What about training?

Chunking based SVMs solve reduced problem on working set

Update rule: fj ← f old
j +

∑
i∈W (αi − αold

i )yi k(xi , xj)

Fast with kernel caching - but infeasible
(for N = 106 only 125 kernel rows fit in 1GiB memory)

No kernel caches necessary: Faster + Memory efficient

Training on 10 million examples ⇒ speedup factor up to 100



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Linadd

It works! It is fast!

Linadd speedup factor up to 100,000 when applying

Further Speedup and Efficiency Considerations

w may still be huge ⇒ fix by not constructing whole w but
only blocks and computing batches

Parallelize! ⇒ do lookups in parallel

What about training?

Chunking based SVMs solve reduced problem on working set

Update rule: fj ← f old
j +

∑
i∈W (αi − αold

i )yi k(xi , xj)

Fast with kernel caching - but infeasible
(for N = 106 only 125 kernel rows fit in 1GiB memory)

No kernel caches necessary: Faster + Memory efficient

Training on 10 million examples ⇒ speedup factor up to 100



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Application TSS recognition

Detecting Transcription Start Sites

Some features to describe TSS (weak)

CpG islands (often over TSS/first exon; in most, but not all
promoters)

TSS with TATA box (≈ −30 bp upstream)

TFBS in Promoter region, Exon content in UTR 5” region

Idea:
Combine weak features to build strong promoter predictor
k(x, x′)=kTSS (x, x′) + kCpG (x, x′) + kcoding (x, x′) + kenergy (x, x′) + ktwist(x, x′)



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Application TSS recognition

The 5 sub-kernels

1 TSS signal (including parts of core promoter with TATA box)

– use Weighted Degree Shift kernel

2 CpG Islands, distant enhancers and TFBS upstream of TSS

– use Spectrum kernel (large window upstream of TSS)

3 Model coding sequence TFBS downstream of TSS

– use another Spectrum kernel (small window downstream
of TSS)

4 Stacking energy of DNA

– use btwist energy of dinucleotides with Linear kernel

5 Twistedness of DNA

– use btwist angle of dinucleotides with Linear kernel



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Application TSS recognition

State-of-the-art Performance

Receiver Operator Characteristic and Precision Recall Curve

ARTS (Sonnenburg et al. 2006) twice as accurate!

Independent evaluation of 17 methods (Abeel et al. ISMB, 2009)
TSS detector (ARTS) winner in evaluation of 17 methods.



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Application TSS recognition

State-of-the-art Performance

Receiver Operator Characteristic and Precision Recall Curve

ARTS (Sonnenburg et al. 2006) twice as accurate!

Independent evaluation of 17 methods (Abeel et al. ISMB, 2009)
TSS detector (ARTS) winner in evaluation of 17 methods.



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Application TSS recognition

Beauty in Generality

    TSS     AccSplice  DonSplice  AltSplice TransSplice     TIS    
0

20

40

60

80

100

 

 
SVM performance
Best competitor

Transcription Start (Sonnenburg et al., 2006/Down et al. 2002)

Acceptor Splice Site (Sonnenburg et al., 2007/Baten et al. 2006)

Donor Splice Site (Sonnenburg et al., 2007/Baten et al. 2006)

Alternative Splicing (Rätsch, Sonnenburg et al., 2005/-)

Transsplicing (Schweikert, Sonnenburg et al., 2009/-)

Translation Initiation (Sonnenburg et al., 2008/Saeys et al., 2007)

Drawback: SVM solution is hard to interpret!!



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Application TSS recognition

Beauty in Generality

    TSS     AccSplice  DonSplice  AltSplice TransSplice     TIS    
0

20

40

60

80

100

 

 
SVM performance
Best competitor

Transcription Start (Sonnenburg et al., 2006/Down et al. 2002)

Acceptor Splice Site (Sonnenburg et al., 2007/Baten et al. 2006)

Donor Splice Site (Sonnenburg et al., 2007/Baten et al. 2006)

Alternative Splicing (Rätsch, Sonnenburg et al., 2005/-)

Transsplicing (Schweikert, Sonnenburg et al., 2009/-)

Translation Initiation (Sonnenburg et al., 2008/Saeys et al., 2007)

Drawback: SVM solution is hard to interpret!!



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Outline

1 Introduction
Genomic Signals

2 Sequence Classification
Support Vector Machines
String Kernels
Example

3 Large Scale Learning
Application TSS recognition

4 Explanation and Visualization
Introduction
Definition
Applications

5 Discussion



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Introduction

Understanding Support Vector Machines

Goal

For PWMs we have sequence logos:

We would like to have similar means to
understand Support Vector Machines.



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Introduction

Why Are SVM’s Hard to Interpret?

SVM decision function is α weighting of training points

s(x) =
N∑

i=1

αiyi k(xi , x) + b

α1·
α2·
α3·
...

...
αN ·

But we are interested in weights over features.



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Introduction

SVM Scoring Function

w =
N∑

i=1

αiyiΦ(xi ) s(x) :=
K∑

k=1

L−k+1∑

i=1

w
(

x[i ]k , i
)

+ b

k-mer pos. 1 pos. 2 pos. 3 pos. 4 · · ·
A +0.1 -0.3 -0.2 +0.2 · · ·
C 0.0 -0.1 +2.4 -0.2 · · ·
G +0.1 -0.7 0.0 -0.5 · · ·
T -0.2 -0.2 0.1 +0.5 · · ·

AA +0.1 -0.3 +0.1 0.0 · · ·
AC +0.2 0.0 -0.2 +0.2 · · ·

...
...

...
...

...
. . .

TT 0.0 -0.1 +1.7 -0.2 · · ·
AAA +0.1 0.0 0.0 +0.1 · · ·
AAC 0.0 -0.1 +1.2 -0.2 · · ·

...
...

...
...

...
. . .

TTT +0.2 -0.7 0.0 0.0 · · ·



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Introduction

The Scoring System - Examples

s(x) :=
K∑

k=1

L−k+1∑

i=1

w
(

x[i ]k , i
)

+ b

Examples:

WD-kernel (Rätsch, Sonnenburg, 2005)

WD-kernel with shifts (Rätsch, Sonnenburg, 2005)

Spectrum kernel (Leslie, Eskin, Noble, 2002)

Oligo Kernel (Meinicke et al., 2004)

Not limited to SVM’s:

Markov Chains (higher order/inhomogeneous/mixed order)



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Introduction

The SVM Weight Vector w

weblogo.berkeley.edu

5′

1C
A
T

2T
A

3G
C
A

4T
C
A

5C
A
T

6C
A
T

7C
T
A

8T
C
A

9T
A

10T
C
A

11G
T
A

12G
A
T

13T
C
A

14C
A

15C
A

16A
T
C

17G
T
A

18T
A

19T
A

20T
C
A

21A
T

22T 23C
A
T

24T
C

25A 26G 27G
C
A
T

28G
T
A

29T
C
A

30T
A
G

31T
C
A

32A
C
T

33C
G
A

34C
G
A

35A
C
T

36G
C
T
A

37G
C
T
A

38T
C
A

39C
T
A

40C
A

41T
A
C

42C
G
A

43G
T
A

44G
A
T
C

45G
C
T

46G
A
T

47C
T
A

48A
C
G

49C
T
A

50T
G
C

3′

Position
5 10 15 20 25 30 35 40 45 50

A

C

G

T

Position
5 10 15 20 25 30 35 40 45 50

AA
AC
AG
AT
CA
CC
CG
CT
GA
GC
GG
GT
TA
TC
TG
TT

...

Explicit representation of w allows for (some) interpretation!

String kernel SVMs capable of efficiently dealing with large
k-mers k > 10

But: Weights for substrings not independent



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Introduction

Interdependence of k−mer Weights

AACGTACGTACACAC

CGT

TA

AACGTACG

.

wT
wTA
wTAC

w...

TAC

GTwGT
wCGT

T

..

What is the score for TAC?

Take wTAC?

But substrings and
overlapping strings
contribute too!

Problem

The SVM-w does NOT reflect the score for a motif



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Definition

Positional Oligomer Importance Matrices (POIMs)

Idea:

Given k−mer z at position j in the sequence, compute
expected score E [ s(x) | x [j ] = z ] (for small k)

AAAAAAAAAATACAAAAAAAAAA
AAAAAAAAAATACAAAAAAAAAC
AAAAAAAAAATACAAAAAAAAAG

TTTTTTTTTTTACTTTTTTTTTT

...
Normalize with expected score over all sequences

POIMs (Sonnenburg et al. 2008)

Q(z, j) := E [ s(x) | x [j ] = z ] − E [ s(x) ]

⇒ Needs efficient algorithm for computation



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Definition

Efficient Computation

Effort of naive approach exponential O(|Σ|L + L|Σ|k)
(e.g. Splice Sites 10120)

Q(z, j) := E [ s(x) | x [j ] = z ] − E [ s(x) ]

Number of k-mers grows linearly with size of input

Only features which are dependent on (z, j) matter

Computation can be split in contributions from 4 cases

Efficient Recursive Algorithm:

Effort linear in length of input: O(LN + L|Σ|k)



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Definition

Deriving an Efficient Algorithm

All features which are independent of (z, j) vanish

Q(z, j) := E [ s(x) | x [j ] = z ] − E [ s(x) ] .

=
∑

(y,i)∈I

w(y, i)
[
Pr ( x [i ] = y | x [j ] = z ) − Pr ( x [i ] = y )

]

= u(z, j)−
∑

z′∈Σ|z|

Pr ( x [j ] = z′ ) u(z′, j)

Computation can be split in contributions from 4 cases:

u(z, j) :=
∑

(y,i)∈I(z,j)

Pr ( x [i ] = y | x [j ] = z ) w(y, i)

= u∨(z, j) + u∧(z, j) + u<(z, j) + u>(z, j)− w(z, j) ,

AATACGTAC

TACGT ...AATACGTAC...

AATACGTAC

...AATACGT

AATACGTAC AATACGTAC

TACGTAC...

For AATACGTAC: substring, superstring, left and right partial overlap



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Definition

Efficient Recursive Algorithm

u∨(σzτ, j) = w(σzτ,j) + u∨(σz, j) + u∨(zτ, j + 1)− u∨(z, j + 1) for σ, τ ∈ Σ

u∧(z, j) = w(z,j) −
∑

(σ,τ)∈Σ2

Pr ( x[j − 1] = σ )Pr ( x[j + k] = τ ) u∧(σzτ, j − 1)

+
∑
σ∈Σ

Pr ( x[j − 1] = σ ) u∧(σz, j − 1) +
∑
τ∈Σ

Pr ( x[j + p] = τ ) u∧(zτ, j)

u<(z, j) =
∑
σ∈Σ

Pr ( x[j − 1] = σ )

min{k,K}−1∑
l=1

L
(
σ(z[1]l ), j − 1

)

u>(z, j) =
∑
τ∈Σ

Pr ( x[j + k] = τ )

min{k,K}−1∑
l=1

R
(

z[k − l + 1]lτ, j + p − l
)
,

L(z, j) = w(z,j) +
∑
σ∈Σ

Pr ( x [j − 1] = σ ) L(σz, j − 1)

R(z, j) = w(z,j) +
∑
τ∈Σ

Pr ( x [j + p] = τ )R(zτ, j)



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Definition

Ranking Features and Condensing Information

Obtain highest scoring z from
Q(z, i) (Enhancer or Silencer)

Visualize POIM as heat map;
x-axis: position
y-axis: k-mer
color: importance

For large k: Differential POIMs;
x-axis: position
y-axis: k-mer length
color: importance

z i Q(z, i)
GATTACA 10 +30
AGTAGTG 30 +20
AAAAAAA 10 -10

. . . . . . . . .

POIM − GATTACA (Subst. 0) Order 1

Position
5 10 15 20 25 30 35 40 45 50

A

C

G

T

Differential POIM Overview − GATTACA (Subst. 0)

M
ot

if 
Le

ng
th

 (
k)

Position
5 10 15 20 25 30 35 40 45 50

8

7

6

5

4

3

2

1



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Applications

GATTACA and AGTAGTG at Fixed Positions 10 and 30



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Applications

GATTACA and AGTAGTG at fixed positions 10 and 30

K−mer Scoring Overview − GATTACA (Subst. 0)

M
ot

if 
Le

ng
th

 (
k)

Position
5 10 15 20 25 30 35 40 45 50

8

7

6

5

4

3

2

1

w



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Applications

GATTACA and AGTAGTG at fixed positions 10 and 30

K−mer Scoring Overview − GATTACA (Subst. 0)

M
ot

if 
Le

ng
th

 (
k)

Position
5 10 15 20 25 30 35 40 45 50

8

7

6

5

4

3

2

1

Differential POIM Overview − GATTACA (Subst. 0)

M
ot

if 
Le

ng
th

 (
k)

Position
5 10 15 20 25 30 35 40 45 50

8

7

6

5

4

3

2

1

w

Q



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Applications

GATTACA and AGTAGTG at fixed positions 10 and 30

K−mer Scoring Overview − GATTACA (Subst. 0)

M
ot

if 
Le

ng
th

 (
k)

Position
5 10 15 20 25 30 35 40 45 50

8

7

6

5

4

3

2

1

Differential POIM Overview − GATTACA (Subst. 0)

M
ot

if 
Le

ng
th

 (
k)

Position
5 10 15 20 25 30 35 40 45 50

8

7

6

5

4

3

2

1

K−mer Scoring Overview − GATTACA (Subst. 2)

M
ot

if 
Le

ng
th

 (
k)

Position
5 10 15 20 25 30 35 40 45 50

8

7

6

5

4

3

2

1

K−mer Scoring Overview − GATTACA (Subst. 4)

M
ot

if 
Le

ng
th

 (
k)

Position
5 10 15 20 25 30 35 40 45 50

8

7

6

5

4

3

2

1

K−mer Scoring Overview − GATTACA (Subst. 5)

M
ot

if 
Le

ng
th

 (
k)

Position
5 10 15 20 25 30 35 40 45 50

8

7

6

5

4

3

2

1

Differential POIM Overview − GATTACA (Subst. 2)

M
ot

if 
Le

ng
th

 (
k)

Position
5 10 15 20 25 30 35 40 45 50

8

7

6

5

4

3

2

1

Differential POIM Overview − GATTACA (Subst. 4)

M
ot

if 
Le

ng
th

 (
k)

Position
5 10 15 20 25 30 35 40 45 50

8

7

6

5

4

3

2

1

Differential POIM Overview − GATTACA (Subst. 5)

M
ot

if 
Le

ng
th

 (
k)

Position
5 10 15 20 25 30 35 40 45 50

8

7

6

5

4

3

2

1

w

Q



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Applications

GATTACA at variable positions



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Applications

GATTACA at variable positions

weblogo.berkeley.edu

0

1

2

b
i
t
s

5′

-
3
0

T
A
C
G

-
2
9

T
G
C
A

-
2
8

G
C
T
A

-
2
7

C
T
G
A

-
2
6

T
A
G
C

-
2
5

T
A
C
G

-
2
4

T
A
C
G

-
2
3

T
A
C
G

-
2
2

A
T
C
G

-
2
1

T
C
A
G

-
2
0

A
T
G
C

-
1
9

C
T
A
G

-
1
8

C
G
T
A

-
1
7

T
A
C
G

-
1
6

C
T
G
A

-
1
5

C
T
G
A

-
1
4

C
G
A
T

-
1
3

C
T
G
A

-
1
2

G
T
C
A

-
1
1

C
G
T
A

-
1
0

C
A
G
T

-
9

C
G
T
A

-
8

C
G
T
A

-
7

C
G
T
A

-
6

G
C
T
A

-
5

C
G
T
A

-
4

C
G
T
A

-
3

C
G
T
A

-
2

C
G
T
A

-
1

C
G
T
A

0

C
G
T
A

1

G
C
T
A

2

G
C
T
A

3

G
C
T
A

4

G
C
T
A

5

G
C
T
A

6

C
G
T
A

7

G
C
T
A

8

G
C
T
A

9

G
C
T
A

1
0

T
G
C
A

1
1

T
G
C
A

1
2

G
T
C
A

1
3

G
C
T
A

1
4

G
C
T
A

1
5

G
T
A
C

1
6

C
T
G
A

1
7

G
C
T
A

1
8

G
A
C
T

1
9

T
A
C
G

2
0

T
G
C
A

2
1

G
T
A
C

2
2

T
G
C
A

2
3

T
G
A
C

2
4

G
C
A
T

2
5

C
G
T
A

2
6

T
G
C
A

2
7

C
G
A
T

2
8

A
C
G
T

2
9

A
C
G
T

3
0

G
T
A
C

3′



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Applications

GATTACA at variable positions

Differential POIM Overview − GATTACA shift

M
ot

if L
en

gt
h 

(k
)

Position
−30 −20 −10 0 10 20 30

8

7

6

5

4

3

2

1



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Applications

C.elegans Acceptor Splice Site Recognition

Differential POIM Overview − C.elegans Acceptor

M
ot

if 
Le

ng
th

 (
k)

Position
−50 −40 −30 −20 −10 0 10 20 30 40 50

8

7

6

5

4

3

2

1

−50 −40 −30 −20 −10 0 10 20 30 40 50

10

20

30

40

50

60

70

80

90

100
POIM Weight Mass − C.elegans Acceptor

W
ei

gh
t M

as
s

Position

 

 

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8

POIM − C.elegans Acceptor Order 2

Position
−50 −40 −30 −20 −10 0 10 20 30 40 50

AA
AC
AG
AT
CA
CC
CG
CT
GA
GC
GG
GT
TA
TC
TG
TT

Upstream
AGGTAAGT -44/++ Donor
GGGGGG -16/- - Silencer?
TAATAA -16/++ Branch

Central
TTTTTTC -06/+
TTTCAG A

G -03/++ Acceptor

Downstream
TTTTTTTT +07/- -
TTTTT +26/- -



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Applications

Drosophila Transcription Starts

Differential POIM Overview − Drosophila TSS

M
ot

if 
Le

ng
th

 (
k)

Position
−70 −60 −50 −40 −30 −20 −10 0 10 20 30 40

8

7

6

5

4

3

2

1

TATAAAA -29/++
GTATAAA -30/++
ATATAAA -28/++

TATA-box

CAGTCAGT -01/++
TCAGTTGT -01/++
CGTCAGTT -03/++

Inr TCAG
T

TT
C

CGTCGCG +18/++
GCGCGCG +23/++
CGCGCGC +22/++

CpG



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Outline

1 Introduction
Genomic Signals

2 Sequence Classification
Support Vector Machines
String Kernels
Example

3 Large Scale Learning
Application TSS recognition

4 Explanation and Visualization
Introduction
Definition
Applications

5 Discussion



Introduction Sequence Classification Large Scale Learning Explanation and Visualization Discussion

Conclusions

Support Vector Machines with string kernels

General and often state-of-the art signal detectors

Applicable to genome-sized datasets

Using POIMs SVMs are interpretable

Efficient implementation

http://www.shogun-toolbox.org
More machine learning software http://mloss.org

Discussion

Multiple Kernel Learning for interpretability and improving
Accuracy (Sonnenburg et al. 2004; Kloft, Sonnenburg et al. 2009)

Learn string-kernel SVMs in the primal (Sonnenburg et al. 2010)

http://www.shogun-toolbox.org
http://mloss.org

	Introduction
	Genomic Signals

	Sequence Classification
	Support Vector Machines
	String Kernels
	Example

	Large Scale Learning
	
	
	Application TSS recognition

	Explanation and Visualization
	Introduction
	Definition
	Applications

	Discussion

