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Sequence Classification

The Motivating Application - Splice Site recognition

Discriminate true signal positions against all other positions

= 150 nucleotides window around dimer

CT...GTCGTA. ..GAAGCTAGGAGCGC. . .ACGCGT...GA

o True sites: fixed window around a true splice site
@ Decoy sites: all other consensus sites

AACGTTTCAACCATTTTGAG
ACAGATATAATAATCTAATT

CTAACACATCCGTCTGTGCC
' TCAATCTCCAAAACCAACAC

@ Sequences are compared via String-Kernels
o For each position a Weighted Degree Kernel compares all
k-mers up to maximal length K
SVM = 3 times more accurate than IMCs
(54.4% vs. 16.2% auPRC)
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Beauty in Generality

Il SVM performance
[l Best competitor
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TSS AccSplice  DonSplice AltSplice  TransSplice TIS

Transcription Start (Sonnenburg et al., Eponine Down et al.)
Acceptor Splice Site (Philips et al.)

Donor Splice Site (Philips et al.)

Alternative Splicing (Réatsch et al., -)

Transsplicing (Schweikert et al., -)

e Translation Initiation (Sonnenburg et al., Saeys et al.)

Drawback: SVM Training Time too large
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@ Human splice sites: 5- 107 strings of length ~ 200

o Note: Raw data is already 9GB in size
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Linear SVMs

|dea - Use recent advances in learning linear SVMs
Optimized Cutting Plane SVM (OCAS, Franc et al.)
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Effort O(N) instead of O(N?) to O(N3)
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String kernel feature space

String Kernel SVM Scoring Function

K L—k+1

s(x) ::w‘d)(x)—i-bzz Z W(X[f]k,i) +b
k=1 i=1

k-mer | pos. 1 | pos. 2 | pos. 3 | pos. 4

A +0.1 -0.3 -0.2 +0.2
C 0.0 -0.1 +2.4 -0.2
G +0.1 -0.7 0.0 -0.5
T -0.2 -0.2 0.1 +0.5
AA +0.1 -0.3 +0.1 0.0

AC +0.2 0.0 -0.2 +0.2

TT 0.0 -0.1 +1.7 -0.2

AAA +0.1 0.0 0.0 +0.1

AAC 0.0 -0.1 +1.2 -0.2

TTT +0.2 -0.7 0.0 0.0
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Training Linear SVMs in String Kernel Feature Space

Mapping
@ A-priory compute ®(x;) forall i =1,..., N
@ Train linear SVM classifier using, e.g., OCAS

Limitations

@ Only small order possible
(K =8 = 87,380 dimensions, per position )

@ Explicit (sparse) representation too costly

Simple Trick
@ Only w «— w + a®(x) and w - ®(x) required

= Compute ®(x) on-the-fly and parallelize!
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Preliminary Results

Human splice dataset
@ Linear SVM in primal (OCAS, 4 CPUs) (proposed method)

e 5-107 strings of length 140
o WD kernel of order 6 (and 8)
o Dimensionality of w is 12 - 10° (requires 80M)
’ N ‘ Time ‘ auPRC ‘

10° | 90 sec | 34.35%

10" | 70 min | 47.47%

5.10" | 8 hrs | 53.92%

@ WD Kernel order > 20 (SVM'8" 4 1inadd, > 4 CPUs)
’ N ‘ Time ‘ auPRC ‘
10° | ~3hrs | ~45.00
8-10° | > 8 days | 54.12
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Discussion

Conclusions

@ Simple speedup trick for string kernels

@ Shared memory parallelization, able to train on 50 million
human splice sites with 12 million dimensions within a day

Discussion
o Limited to low K—mer length

o Is large K really necessary biology-wise?

@ How to improve feature space?

Implemented in SHOGUN http://www.shogun-toolbox.org ..
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