Large Scale Learning with String Kernels

Sören Sonnenburg Fraunhofer FIRST.IDA, Berlin

joint work with Vojtech Franc, Alexander Zien, Gunnar Rätsch

Fraunhofer

Institut Rechnerarchitektur und Softwaretechnik

Sequence Classification

The Motivating Application - Splice Site recognition

Discriminate true signal positions against all other positions

 \approx 150 nucleotides window around dimer

- True sites: fixed window around a true splice site
- Decoy sites: all other consensus sites

```
AAACAAATAAGTAACTAATCTTTTAGGAAGAACGTTTCAACCATTTTGAG
AAGATTAAAAAAAAACAAATTTTTAGCATTACAGATATAATAATCTAATT
CACTCCCCAAATCAACGATATTTTAGTTCACTAACACATCCGTCTGTGCC
TTAATTTCACTTCCACATACTTCCAGATCATCAATCTCCAAAACCAACAC
```

- Sequences are compared via String-Kernels
 - For each position a Weighted Degree Kernel compares all k-mers up to maximal length K

SVM ≈ 3 times more accurate than IMCs (54.4% vs. 16.2% auPRC)

Sequence Classification Beauty in Generality

- Transcription Start (Sonnenburg et al., Eponine Down et al.)
- Acceptor Splice Site (Philips et al.)
- Donor Splice Site (Philips et al.)
- Alternative Splicing (Rätsch et al., -)
- Transsplicing (Schweikert et al., -)
- Translation Initiation (Sonnenburg et al., Saeys et al.)

Task

- Human splice sites: $5 \cdot 10^7$ strings of length ≈ 200
- Note: Raw data is already 9GB in size

Train string-kernel SVM on all available data

Linear SVMs

Idea - Use recent advances in learning linear SVMs

Optimized Cutting Plane SVM (OCAS, Franc et al.)

String kernel feature space

String Kernel SVM Scoring Function

$$s(\mathbf{x}) := \mathbf{w} \cdot \Phi(\mathbf{x}) + b = \sum_{k=1}^{K} \sum_{i=1}^{L-k+1} w(\mathbf{x}[i]^k, i) + b$$

k-mer	pos. 1	pos. 2	pos. 3	pos. 4	
Α	+0.1	-0.3	-0.2	+0.2	
C	0.0	-0.1	+2.4	-0.2	
G	+0.1	-0.7	0.0	-0.5	
Т	-0.2	-0.2	0.1	+0.5	
AA	+0.1	-0.3	+0.1	0.0	
AC	+0.2	0.0	-0.2	+0.2	
÷	:	:	:	:	٠
TT	0.0	-0.1	+1.7	-0.2	
AAA	+0.1	0.0	0.0	+0.1	
AAC	0.0	-0.1	+1.2	-0.2	
÷	:	:	:	:	٠
TTT	+0.2	-0.7	0.0	0.0	

Training Linear SVMs in String Kernel Feature Space

Mapping

- A-priory compute $\Phi(\mathbf{x}_i)$ for all i = 1, ..., N
- Train linear SVM classifier using, e.g., OCAS

Limitations

- Only small order possible $(K = 8 \Rightarrow 87,380 \text{ dimensions, per position})$
- 2 Explicit (sparse) representation too costly

Simple Trick

- Only $\mathbf{w} \leftarrow \mathbf{w} + \alpha \Phi(\mathbf{x})$ and $\mathbf{w} \cdot \Phi(\mathbf{x})$ required
- \Rightarrow Compute $\Phi(x)$ on-the-fly and parallelize!

Preliminary Results

Human splice dataset

- Linear SVM in primal (OCAS, 4 CPUs) (proposed method)
 - 5 · 10⁷ strings of length 140
 - WD kernel of order 6 (and 8)
 - Dimensionality of **w** is $12 \cdot 10^6$ (requires 80M)

N	Time	auPRC
10 ⁶	90 sec	34.35%
10 ⁷	70 min	47.47%
$5 \cdot 10^7$	8 hrs	53.92%

② WD Kernel order > 20 (SVM^{light} + linadd, ≥ 4 CPUs)

N	Time	auPRC	
10 ⁶	pprox 3 hrs	\approx 45.00	
8 · 10 ⁶	> 8 days	54.12	

Discussion

Conclusions

- Simple speedup trick for string kernels
- Shared memory parallelization, able to train on 50 million human splice sites with 12 million dimensions within a day

Discussion

- Limited to low K—mer length
- Is large K really necessary biology-wise?
- How to improve feature space?

Implemented in SHOGUN http://www.shogun-toolbox.org

