Large Scale Learning - Challenge (Learning with Millions of Examples and Dimensions)

Sören Sonnenburg and Vojtech Franc

Fraunhofer FIRST.IDA, Berlin

joint work with Vojtech Franc, Elad Yom-Tov and Michele Sebag

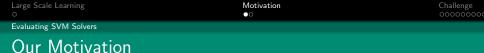
Fraunhofer Institut Rechnerarchitektur und Softwaretechnik

Large Scale Learning	Motivation	Challenge
O	00	00000000
Outline		

2 Motivation

Definition

Large Scale Problems


What makes a Problem Large Scale?

- Large number of data points
- Extremely high dimensionality
- High effort algorithms $\mathcal{O}(N^3)$
- Large memory requirements
- ⇒ Anything that reaches current computers limits: computational, memory, transfer costs

Applications

- Bioinformatics (Splice Sites, Gene Boundaries,...)
- IT-Security (Network traffic)
- Text-Classification (Spam vs. Non-Spam)
- Image Recognition

Current SVM solvers

- Joachims 2005, SVM^{perf} is much faster than SVM^{light}
- Own experiments: SVM^{light} is much faster than SVM^{perf}
- Shalev-Shwartz et.al. 2007, Pegasos is much faster than SVM^{light,perf}
- Own experiments: Pegasos is much slower than SVM light, perf
- Teo et.al. 2007, SVM^{perf} is a special case of BMRM
- Own experiments: BMRM is much faster than SVM perf
- new SVM^{perf2.1} similar in speed to BMRM
- Bottou 2007, SGD done right outperforms competitors

There is no reliable way to tell which method is faster!

Evaluation was done using different criteria!

- Different Parameters $C, \varepsilon, \lambda, \ldots$
- Meaning of parameters different
- Evaluation based on test error, objective value, ...
- Programming Errors, Inefficient Code
- Other accidental mistakes.

Proposal

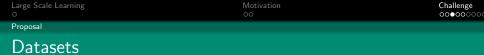
We need a fair comparison!

Proposal for a Large Scale Learning Challenge

- Main Goal
 - Evaluation under exact same fair conditions to answer: Which learning method is most accurate given limited resources?
 - Evaluation based on training time, test error (or objective value, etc. specific to method)

Additional Goals

- Which method gives the overall best classification performance?
- Which classifier is the most training time efficient while achieving a good test error?
- Approximation vs. Exact Algorithms?
- What should one tune? Data representation? Feature selection? Core algorithm?


Large Scale Learning O	Motivation 00	Challenge
Proposal		
Competition		

• Two tracks:

- Wild Competition
- Method Specific:
 - Linear SVM
 - RBF SVM
- Setup:
 - Method are trained on diverse labeled datasets (size $10^{2,3,4,5,6,7,\cdots}$); unlabeled validation set and test set

Evaluation

- Record training time, validation and test output for 10 intermediate points
- Timing "calibrated" using program measuring floating point, integer, memory speed; At the end re-evaluation on a single machine.
- Live feedback for validation set
- Feedback for test set after end of competition
- Competitors are required to submit a detailed explanation of the used methods.

Different properties: sparse/dense, high/low dimensional. Different splits: training, testing and validation parts.

- Real World Datasets:
 - 55M examples human splice dataset (strings of length 201)
 - 500K examples web-spam data (16M dims)
 - 3M examples face detection 1K dimensions
 - 5M examples OCR 1K dimensions
- Artificial Datasets:
 - Generated from known distribution \Rightarrow results can be compared with the optimal classifier.
 - Datatsets with different properties will be generated:
 - Separable versus Non-separable data.
 - Data with low and high intrinsic dimensionality.
 - Data with different scale of features.

Time Line

- 15 February Start of Competition
- Beginning of June End of Open Competition
- We perform re-evaluation on a single CPU Linux machine with 32G of memory
- 9 July 2008 Evaluation in an ICML'2008 workshop

Proceedings in LNCS Springer for best performing methods

Proposal

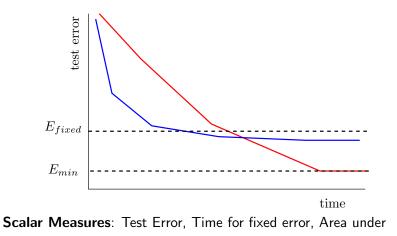
Setup and Evaluation Criteria

Setup Evaluation Criteria

- Time vs. Test Error or Objective Value
- Dataset Size vs. Time $(\mathcal{O}(n^s))$
- Dataset Size vs. Test Error or Objective Value

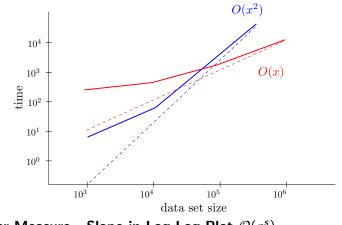
We will compute Performance Figures and Scalar Measures.

Categories


- Overall winner for given dataset based on test error.
- Overall winner based on average rank computed on scalar measures over datasets.

Motivation 00

Evaluation: Time vs. Test Error

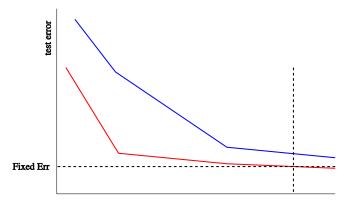

curve

Fraunhofer Institut Rechnerarchitektur und Softwaretechnik Large Scale Learning 0

Setup

Motivation 00

Dataset Size vs. <u>Time</u>


Scalar Measure - Slope in Log-Log Plot $\mathcal{O}(n^s)$

Fraunhofer Institut Rechnerarchitektur und Softwaretechnik Large Scale Learning 0

Setup

Motivation 00 Challenge

Dataset Size vs. Test Error

data set size

Scalar Measures: Dataset size for fixed error, Area under curve

Fraunhofer Institut Rechnerarchitektur und Softwaretechnik Setup

Adjusted Goals and Evaluation for SVMs

Goals for SVMs

- What is the relation between objective value vs. test error?
- What is the relation between stopping conditions and test error?
- Which algorithm is good on what kind of data set ((un)balanced, high or low dimensional, range of C, etc.)

Setup

Adjusted Evaluation for SVMs

Setup and Evaluation Criteria for SVMs

- Linear SVM with sparse data representation
- RBF Kernel SVM with dense data representation
- Run SVM for given fixed values of C and kernel width
- Record objective value while training
- Additional stopping criterion: target objective value
- Figures: Time vs. C, Time vs. Objective, Time vs. Test Error and Objective
- Scalars: Total time for model selection (all Cs and kernel widths), Time to reach target objective

Large Scale Learning 0

Setup

Motivation 00 Challenge

Take part in the Challenge!

2			is [Evaluation			
<u>E</u> ile <u>E</u> dit ⊻iew <u>W</u> eb <u>G</u> o	<u>B</u> ookmarks <u>T</u> abs <u>H</u>	elp				
📔 🖕 👻 🧼 🗸 🙆 🎒 🛧 http://localhost:8000/submission/evaluation/1/2/						
Google 🗸 🗸 Onelo	ok 💽 🖌 🧟	 ✓ ⊘debs 	✓ @bugs ✓ @abwgs ebwgs <a <="" a="" href="mailto:ebwgs"> 			

Start of Competition in February / End: June

- Two Tracks:
 - Wild Competition
 - SVM
- 10 Datasets
 - 4 real world datasets (up to 55Mio examples)
 - 6 artificial datasets
- Evaluation
 - Figures: Time vs. Error
 - Dataset Size vs. Time
 - Dataset Size vs. Error

Take part in the Challenge!

http://largescale.first.fraunhofer.de

