
Introduction Linadd Algorithm Experiments Advertisement

Large Scale Learning with String Kernels

Sören Sonnenburg
Fraunhofer FIRST.IDA, Berlin

joint work with
Gunnar Rätsch, Konrad Rieck

Introduction Linadd Algorithm Experiments Advertisement

1 Introduction

2 Linadd Algorithm

3 Experiments

Introduction Linadd Algorithm Experiments Advertisement

Outline

1 Introduction

2 Linadd Algorithm

3 Experiments

Introduction Linadd Algorithm Experiments Advertisement

Motivation

Large Scale Problems

Text Classification (Spam, Web-Spam, Categorization)
Task: Given N documents, with class label ±1, predict text
type.

Security (Network Traffic, Viruses, Trojans)
Task: Given N executables, with class label ±1, predict
whether executable is a virus.

Biology (Promoter, Splice Site Prediction)
Task: Given N sequences around Promoter/Splice Site (label
+1) and fake examples (label −1), predict whether there is a
Promoter/Splice Site in the middle

⇒ Approach: String kernel + Support Vector Machine
⇒ Large N is needed to achieve high accuracy (i.e. N = 107)

Introduction Linadd Algorithm Experiments Advertisement

Motivation

Formally

Given:
N training examples (xi , yi) ∈ (X ,±1), i = 1 . . .N
string kernel K (x, x′) = Φ(x) · Φ(x′)

Examples:
words-in-a-bag-kernel
k-mer based kernels (Spectrum, Weighted Degree)

Task:
Train Kernelmachine on Large Scale Datasets, e.g. N = 107

Apply Kernelmachine on Large Scale Datasets, e.g. N = 109

Introduction Linadd Algorithm Experiments Advertisement

Motivation

String Kernels

Spectrum Kernel (with mismatches, gaps)

K (x, x′) = Φsp(x) · Φsp(x′)

Weighted Degree Kernel (with shift)A G T C A G A T A G A G G A C A T C A G T A G A C A G A T T A A A| | | | | | | | | | | | | |T T A T A G A T A G A C A A A G A C A T C A G T A G A C T T A T T
k (s 1 , s 2) = w 7 + w 1 + w 2 + w 2 + w 3s 1s 2

For string kernels X discrete space and Φ(x) sparse

Introduction Linadd Algorithm Experiments Advertisement

Motivation

Kernel Machine

Kernel Machine Classifier:

f (x) = sign

(
N∑

i=1

αiyi k(xi , x) + b

)
To compute output on all M examples:

∀j = 1, . . . ,M :
N∑

i=1

αiyi k(xi , xj) + b

Computational effort:
Single O(NT) (T time to compute the kernel)
All O(NMT)

⇒ Costly!
⇒ Used in training and testing - worth tuning.
⇒ How to further speed up if T = dim(X) already linear?

Introduction Linadd Algorithm Experiments Advertisement

Outline

1 Introduction

2 Linadd Algorithm

3 Experiments

Introduction Linadd Algorithm Experiments Advertisement

Linadd

Linadd Speedup Idea

Key Idea: Store w and compute w · Φ(x) efficiently

N∑
i=1

αiyi k(xi , xj) =
N∑

i=1

αiyiΦ(xi)︸ ︷︷ ︸
w

·Φ(xj) = w · Φ(xj)

When is that possible ?
1 w has low dimensionality and sparse (e.g. 48 for Feature map

of Spectrum Kernel of order 8 DNA)
2 w is extremely sparse although high dimensional (e.g. 1014 for

Weighted Degree Kernel of order 20 on DNA sequences of
length 100)

Effort: O(MT ′) ⇒ Potential speedup of factor N

Introduction Linadd Algorithm Experiments Advertisement

Linadd

Technical Remark

Treating w
w must be accessible by some index u (i.e. u = 1 . . . 48 for
8-mers of Spectrum Kernel on DNA or word index for
word-in-a-bag kernel)
Needed Operations

Clear: w = 0
Add: wu ← wu + v (only needed |W | times per iteration)
Lookup: obtain wu (must be highly efficient)

Storage
Explicit Map (store dense w); Lookup in O(1)
Sorted Array (word-in-bag-kernel: all words sorted with value
attached); Lookup in O(log(

∑
u I (wu 6= 0)))

Suffix Tries, Trees; Lookup in O(K)

Introduction Linadd Algorithm Experiments Advertisement

Linadd

Datastructures - Summary of Computational Costs

Comparison of worst-case run-times for operations
clear of w
add of all k-mers u from string x to w
lookup of all k-mers u from x′ in w

Explicit map Sorted arrays Tries Suffix trees
clear O(|Σ|d) O(1) O(1) O(1)
add O(lx) O(lx log lx) O(lxd) O(lx)
lookup O(lx′) O(lx + lx′) O(lx′d) O(lx′)

Conclusions
Explicit map ideal for small |Σ|
Sorted Arrays for larger alphabets
Suffix Arrays for large alphabets and order (overhead!)

Introduction Linadd Algorithm Experiments Advertisement

Linadd

Support Vector Machine

Linadd directly applicable when applying the classifier.

f (x) = sign

(
N∑

i=1

αiyi k(xi , x) + b

)
Problems

w may still be huge ⇒ fix by not constructing whole w but
only blocks and computing batches

What about training?

general purpose QP-solvers, Chunking, SMO
optimize kernel (i.e. find O(L) formulation, where
L = dim(X))
Kernel Caching infeasable
(for N = 106 only 125 kernel rows fit in 1GiB memory)

⇒ Use linadd again: Faster + needs no kernel caching

Introduction Linadd Algorithm Experiments Advertisement

Linadd

Derivation I

Analyzing Chunking SVMs (GPDT, SVMlight:)

Training algorithm (chunking):
while optimality conditions are violated do

select q variables for the working set.
solve reduced problem on the working set.

end while

At each iteration, the vector f , fj =
∑N

i=1 αiyi k(xi , xj),
j = 1 . . .N is needed for checking termination criteria and
selecting new working set (based on α and gradient w.r.t. α).
Avoiding to recompute f , most time is spend computing
“linear updates” on f on the working set W

fj ← f old
j +

∑
i∈W

(αi − αold
i)yi k(xi , xj)

Introduction Linadd Algorithm Experiments Advertisement

Linadd

Derivation II

Use linadd to compute updates.

Update rule: fj ← f old
j +

∑
i∈W (αi − αold

i)yi k(xi , xj)

Exploiting k(xi , xj) = Φ(xi) · Φ(xj) and w =
∑N

i=1 αiyiΦ(xi):

fj ← f old
j +

∑
i∈W

(αi − αold
i)yiΦ(xi) · Φ(xj) = f old

j + wW · Φ(xj)

(wW normal on working set)

Observations

q := |W | is very small in practice ⇒ can effort more complex
w and clear,add operation
lookups dominate computing time

Introduction Linadd Algorithm Experiments Advertisement

Linadd

Algorithm

Recall we need to compute updates on f (effort c1|W |LN):

fj ← f old
j +

∑
i∈W

(αi − αold
i)yi k(xi , xj) for all j = 1 . . .N

Modified SVMlight using “LinAdd” algorithm (effort c2`LN, `
Lookup cost)

fj = 0, αj = 0 for j = 1, . . . ,N
for t = 1, 2, . . . do

Check optimality conditions and stop if optimal, select working
set W based on f and α, store αold = α
solve reduced problem W and update α
clear w
w← w + (αi − αold

i)yiΦ(xi) for all i ∈W
update fj = fj + w · Φ(xj) for all j = 1, . . . ,N

end for
Speedup of factor c1

c2` |W |

Introduction Linadd Algorithm Experiments Advertisement

Linadd

Parallelization

fj = 0, αj = 0 for j = 1, . . . ,N
for t = 1, 2, . . . do

Check optimality conditions and stop if optimal, select working
set W based on f and α, store αold = α
solve reduced problem W and update α

clear w
w← w + (αi − αold

i)yiΦ(xi) for all i ∈W
update fj = fj + w · Φ(xj) for all j = 1, . . . ,N

end for
Most time is still spent in update step ⇒ Parallize!

transfer α (or w depending on the communication costs and
size)
update of f is divided into chunks
each CPU computes a chunk of f I for I ⊂ {1, . . . ,N}

Introduction Linadd Algorithm Experiments Advertisement

Outline

1 Introduction

2 Linadd Algorithm

3 Experiments

Introduction Linadd Algorithm Experiments Advertisement

Datasets

Web Spam
Negative data: Use Webb Spam corpus
http://spamarchive.org/gt/ (350,000 pages)
Positive data: Download 250,000 pages randomly from the
web (e.g. cnn.com, microsoft.com, slashdot.org and
heise.de)
Use spectrum kernel k = 4 using sorted arrays on 100,000
examples train and test (average string length 30Kb, 4 GB in
total, 64bit variables ⇒ 30GB)

http://spamarchive.org/gt/

Introduction Linadd Algorithm Experiments Advertisement

Web-Spam

Web Spam results

Classification Accuracy and Training Time

N 100 500 5,000 10,000 20,000 50,000 70,000 100,000
Spec 2 97 1977 6039 19063 94012 193327 -

LinSpec 3 255 4030 9128 11948 44706 83802 107661
Accuracy 89.59 92.12 96.36 97.03 97.46 97.83 97.98 98.18

auROC 94.37 97.82 99.11 99.32 99.43 99.59 99.61 99.64

Speed and classification accuracy comparison of the spectrum
kernel without (Spec) and with linadd (LinSpec)

Introduction Linadd Algorithm Experiments Advertisement

Splice Site Recognition

Datasets

Splice Site Recognition
Negative Data: 14,868,555 DNA sequences of fixed length 141
base pairs
Positive Data: 159,771 Acceptor Splice Site Sequences
Use WD kernel k = 20 (using Tries) and spectrum kernel
k = 8 (using explicit maps) on 10, 000, 000 train and
5,028,326 examples

Introduction Linadd Algorithm Experiments Advertisement

Splice Site Recognition

Linadd for WD kernel

For linear combination of kernels:∑
j∈W (αj − αold

j)yj k(xi , xj) (O(Ld |W |N))

use one tree of depth d per position in sequence
for Lookup use traverse one tree of depth d per position in
sequence

Example d = 3 :

output for N sequences of length L in O(Ld · N)

(d depth of tree ∧= degree of WD kernel)

Introduction Linadd Algorithm Experiments Advertisement

Splice Site Recognition

Spectrum Kernel on Splice Data

1000 10000 100000 1000000

1

10

100

1000

10000

100000

Number of training examples (logarithmic)

S
V

M
 t

ra
in

in
g

 t
im

e
 i
n

 s
e

c
o

n
d

s
 (

lo
g

a
ri
th

m
ic

)

Spec−Precompute

Spec−orig

Spec−linadd 1CPU

Spec−linadd 4CPU

Spec−linadd 8CPU

Introduction Linadd Algorithm Experiments Advertisement

Splice Site Recognition

Weighted Degree Kernel on Splice Data

1000 10000 100000 1000000 10000000

1

10

100

1000

10000

Number of training examples (logarithmic)

S
V

M
 t

ra
in

in
g

 t
im

e
 i
n

 s
e

c
o

n
d

s
 (

lo
g

a
ri
th

m
ic

)

WD−Precompute

WD 1CPU

WD 4CPU

WD 8CPU

WD−Linadd 1CPU

WD−Linadd 4CPU

WD−Linadd 8CPU

Introduction Linadd Algorithm Experiments Advertisement

Splice Site Recognition

More data helps

N auROC auPRC
500 75.55 3.94

1,000 79.86 6.22
5,000 90.49 15.07
10,000 92.83 25.25
30,000 94.77 34.76
50,000 95.52 41.06

100,000 96.14 47.61

N auROC auPRC
200,000 96.57 53.04
500,000 96.93 59.09

1,000,000 97.19 63.51
2,000,000 97.36 67.04
5,000,000 97.54 70.47

10,000,000 97.67 72.46
10,000,000 96.03∗ 44.64∗

Introduction Linadd Algorithm Experiments Advertisement

Splice Site Recognition

Discussion

Conclusions

General speedup trick (clear, add, lookup operations) for
string kernels
Shared memory parallelization, able to train on 10 million
human splice sites
Linadd gives speedup of factor 64 (4) for Spectrum (Weighted
Degree) kernel and 32 for MKL
4 CPUs further speedup of factor 3.2 and for 8 CPU factor 5.4
parallelized 8 CPU linadd gives speedup of factor 125 (21) for
Spectrum (Weighted Degree) kernel, up to 200 for MKL

Discussion

State-of-the-art accuracy
Could we do better by encoding invariances?

Implemented in SHOGUN http://www.shogun-toolbox.org

http://www.shogun-toolbox.org

Introduction Linadd Algorithm Experiments Advertisement

New JMLR Track

Machine Learning Open Source Software

To support the open source movement JMLR is proud to announce
a new track on machine learning open source software.

Contributions to http://jmlr.org/mloss/ should be related to
Implementations of machine learning algorithms,
Toolboxes,
Languages for scientific computing

and should include
A 4 page description,
The code,
A recognised open source license.

Contribute to http://mloss.org the mloss repository!

http://jmlr.org/mloss/
http://mloss.org

	Introduction
	

	Linadd Algorithm
	

	Experiments
	
	

	Advertisement
	

