Large Scale Learning with String Kernels

Séren Sonnenburg
Fraunhofer FIRST.IDA, Berlin

joint work with
Gunnar Ritsch, Konrad Rieck

Institut
Rechnerarchitektur
und Softwaretechnik

Fraunhofer

@ Introduction
© Linadd Algorithm

© Experiments

Introduction

Outline

o Introduction

Fraunhofer ;i .
Rechnerarchitektur
und Softwaretechnik

Introduction
®000

Motivation

Large Scale Problems

o Text Classification (Spam, Web-Spam, Categorization)
o Task: Given N documents, with class label +1, predict text
type.
@ Security (Network Traffic, Viruses, Trojans)
o Task: Given N executables, with class label +1, predict
whether executable is a virus.
e Biology (Promoter, Splice Site Prediction)

o Task: Given N sequences around Promoter/Splice Site (label
+1) and fake examples (label —1), predict whether there is a
Promoter/Splice Site in the middle

= Approach: String kernel 4+ Support Vector Machine
= Large N is needed to achieve high accuracy (i.e. N = 107)

Introduction
oe00

Motivation

Formally

o Given:
o N training examples (x;,y;) € (X,£1),i=1...N
o string kernel K(x,x’) = ®(x) - (x’)
o Examples:
o words-in-a-bag-kernel
o k-mer based kernels (Spectrum, Weighted Degree)
o Task:

o Train Kernelmachine on Large Scale Datasets, e.g. N = 107
o Apply Kernelmachine on Large Scale Datasets, e.g. N = 10°

Introduction
coeo

Motivation

String Kernels

@ Spectrum Kernel (with mismatches, gaps)
K(x,X') = ®gp(x) - Psp(x)

T AAACAAATAAGTAACTAATCTTTTAGGAAGAACGTTTCAACCATTTTGAG
x’ TACCTAATTATGAAATTAAATTTCAGTGTGCTGATGGAAACGGAGAAGTC

o Weighted Degree Kernel (with shift)
k(s1,82) = w7 +Wwi1 + W2+ W2 + W3

S1—>—AGT GGACATCAGTAGACAG —>

I
CAAAGACATCAGTAGACREATT—>

S2—>— TTAT]

For string kernels X’ discrete space and ®(x) sparse

Introduction

[eJele])

Motivation

Kernel Machine

Kernel Machine Classifier:

N
f(x) = sign (Z ajyi k(xi, x) + b)

i=1
To compute output on all M examples:

N
Vi=1,...,M: Za,’y;k(X;,Xj) +b
i=1
Computational effort:
e Single O(NT) (T time to compute the kernel)
e All O(NMT)

= Costly!
= Used in training and testing - worth tuning.
= How to further speed up if T = dim(X’) already linear?

rrrrr ho

Linadd Algorithm

Outline

© Linadd Algorithm

Fraunhofer ;i .
Rechnerarchitektur
und Softwaretechnik

Linadd Algorithm
©0000000

Linadd

Linadd Speedup ldea

Key Idea: Store w and compute w - ®(x) efficiently

N N
D aiyik(xi x) = > iyid(x;) -S(x;) = w - b(x;)
i=1 i=1

w

When is that possible 7

@ w has low dimensionality and sparse (e.g. 4% for Feature map
of Spectrum Kernel of order 8 DNA)

@ w is extremely sparse although high dimensional (e.g. 10%* for
Weighted Degree Kernel of order 20 on DNA sequences of
length 100)

Effort: O(MT’) = Potential speedup of factor N

Linadd Algorithm
0®000000

Linadd

Technical Remark

Treating w

@ w must be accessible by some index u (i.e. u=1...48 for
8-mers of Spectrum Kernel on DNA or word index for
word-in-a-bag kernel)

@ Needed Operations

o Clear: w=0
o Add: wy «— w, + Vv (only needed |W| times per iteration)
e Lookup: obtain w, (must be highly efficient)
@ Storage
o Explicit Map (store dense w); Lookup in O(1)
o Sorted Array (word-in-bag-kernel: all words sorted with value
attached); Lookup in O(log(>_, /(w, # 0)))
o Suffix Tries, Trees; Lookup in O(K)

Linadd Algorithm
00®00000

Linadd

Datastructures - Summary of Computational Costs

Comparison of worst-case run-times for operations
@ clear of w
@ add of all k-mers u from string x to w

@ lookup of all k-mers u from x" in w

Explicit map Sorted arrays ~ Tries Suffix trees

clear o(|1Z|9) 0(1) O(1) O(1)
add O(k) O(kloghk) O(kd) O(k)
lookup O(l) O(k+ k) O(hd) O(h)

Conclusions
e Explicit map ideal for small |X|
@ Sorted Arrays for larger alphabets
o Suffix Arrays for large alphabets and order (overhead!)

Linadd Algorithm
000e®0000

Linadd

Support Vector Machine

Linadd directly applicable when applying the classifier.

N
f(x) = sign (Z ajyi k(xi, x) + b)

i=1
Problems
e w may still be huge = fix by not constructing whole w but
only blocks and computing batches
What about training?

@ general purpose QP-solvers, Chunking, SMO

o optimize kernel (i.e. find O(L) formulation, where
L = dim(X))

@ Kernel Caching infeasable
(for N = 10° only 125 kernel rows fit in 1GiB memory)

= Use linadd again: Faster + needs no kernel caching

rrrrr ho

Linadd Algorithm
0000000

Linadd

Derivation |

Analyzing Chunking SVMs (GPDT, SVM/&ht:)

Training algorithm (chunking):
while optimality conditions are violated do
select g variables for the working set.
solve reduced problem on the working set.
end while

o At each iteration, the vector f, f; = SN . ajyi k(x;, X)),
Jj=1...N is needed for checking termination criteria and
selecting new working set (based on « and gradient w.r.t. a).

@ Avoiding to recompute f, most time is spend computing
“linear updates” on f on the working set W

fi — £29 4> (i — a??)yi k(x,)
iew

Linadd Algorithm
0000000

Linadd

Derivation |l

Use linadd to compute updates.

Update rule: f; « ;5.""’ + 3 iew (i — a2y k(x;, X))
Exploiting k(x;,x;) = ®(x;) - ¢(x;) and w = Z,N:l a;yi®(x;):
e £+ 3 (0 - af)i0c) - 0xy) = 7+ wh - 0()
iew

(w" normal on working set)

Observations

@ g := |W]| is very small in practice = can effort more complex
w and clear,add operation

@ lookups dominate computing time

Linadd Algorithm
00000080

Linadd

Algorithm

Recall we need to compute updates on f (effort ¢;|W/|LN):
fi— £+ > (0 — af?)yik(xi, x) forall j=1... N

iew
Modified SVM/&5t using “LinAdd" algorithm (effort c2¢LN, ¢
Lookup cost)
fi=0 a=0frj=1,...,N
fort=1,2,...do
Check optimality conditions and stop if optimal, select working
set W based on f and a, store a°? = «
solve reduced problem W and update o
clear w
W — w + (a; — a?)y;d(x;) for all i € W
update f; = fi +w - ®(x;) forall j=1,..., N
end for

Speedup of factor &\ 74

Linadd Algorithm
0000000e

Linadd

Parallelization

fi=0 aj=0frj=1,...,N

fort =1,2,...do
Check optimality conditions and stop if optimal, select working
set W based on f and a, store o = o

solve reduced problem W and update «

clear w
W — w + (a; — af)y;d(x;) for all i € W
update f; = fi +w - ®(x;) forall j=1,..., N
end for
Most time is still spent in update step = Parallize!
e transfer a (or w depending on the communication costs and
size)
o update of f is divided into chunks
@ each CPU computes a chunk of f; for | C {1,...,N}

Experiments

Outline

e Experiments

Fraunhofer ;i .
Rechnerarchitektur
und Softwaretechnik

Experiments

Datasets

@ Web Spam

o Negative data: Use Webb Spam corpus
http://spamarchive.org/gt/ (350,000 pages)

o Positive data: Download 250,000 pages randomly from the
web (e.g. cnn.com, microsoft.com, slashdot.org and
heise.de)

o Use spectrum kernel k = 4 using sorted arrays on 100,000
examples train and test (average string length 30Kb, 4 GB in
total, 64bit variables = 30GB)

http://spamarchive.org/gt/

Experiments
°

Web-Spam

Web Spam results

Classification Accuracy and Training Time

N || 100 500 5,000 10,000 20,000 50,000 70,000 100,000

Spec 2 97 1977 6039 19063 94012 193327 -
LinSpec 3 255 4030 0128 11948 44706 83802 107661
Accuracy |189.59 92.12 96.36 97.03 97.46 97.83 97.98 98.18
auROC ||94.37 97.82 99.11 99.32 99.43 99.59 99.61 99.64

Speed and classification accuracy comparison of the spectrum
kernel without (Spec) and with 1inadd (LinSpec)

Experiments
©00000

Splice Site Recognition

Datasets

@ Splice Site Recognition
o Negative Data: 14,868,555 DNA sequences of fixed length 141
base pairs
o Positive Data: 159,771 Acceptor Splice Site Sequences
o Use WD kernel k = 20 (using Tries) and spectrum kernel
k = 8 (using explicit maps) on 10,000, 000 train and
5,028,326 examples

Experiments
0®0000
Splice Site Recognition

Linadd for WD kernel

For linear combination of kernels:

>jew (@ — a2y k(xi, ;) (O(Ld|W|N))

AAACTAATTATGAAATTAAATTTCAGAGTGCTGATGGAAACGGAGAAGAA
@ use one tree of depth d per position in sequence

e for Lookup use traverse one tree of depth d per position in

sequence
Example d =3 :
A/\G /\ A/\G
511% \, B 5/|/ %, A/ %,ﬂf—d
syl B {3 o
A1 i 1 ; S

output for N sequences of |ength Lin O(Ld N)
(d depth of tree A degree of WD kernel)

Experiments
00®000

Splice Site Recognition

Spectrum Kernel on Splice Data

T

100000F { —— Spec-Precompute E : Do : : : =
—©6— Spec-orig et : vt : : :

— © — Spec-linadd 1CPU

—#A— Spec-linadd 4CPU F . Do : : :

—0O- - Spec-linadd 8CPU Y

10000

1000

100

SVM training time in seconds (logarithmic)

e i : Lo : i : :
= 1000 10000 100000 1000000
Number of training examples (logarithmic) Bl

und Softwaretechnik

Splice Site Recognition

Experiments
[eJeleY Yolo)

Weighted Degree Kernel on Splice Data

T T T il

—&— WD-Precompute | R4
- © - WD 1CPU : s s
—A— WD 4CPU o /.

5 —o- - WD 8CPU ’,

‘€ 10000k | - & - WD-Linadd 1CPU} -+ o Ry Y E

£ —A— WD-Linadd 4CPU s .

k= —0- - WD-Linadd 8CPU| : RS A

g .

2 rd

= 1000- g

1)

©

C

o

[

@

< 100 i

o

£

2

£ 10]

[

=

>

O 1 4

I i i

1000 10000 100000 1000000 10000000

Number of training examples (logarithmic)

Fraunhofer ;i .

Rechnerarchitektur
und Softwaretechnik

Experiments
0000e0

Splice Site Recognition

More data helps

N || auROC [auPRC || N || auROC | auPRC |

500 || 75.55 3.94 200,000 [96.57 | 53.04
1,000 || 79.86 6.22 500,000 | 96.93 | 59.09
5000 | 9049 | 15.07 || 1,000,000 [97.19 | 63.51
10,000 | 92.83 | 25.25 || 2,000,000 | 97.36 | 67.04
30,000 | 94.77 | 34.76 || 5,000,000 || 97.54 | 70.47
50,000 | 95.52 | 41.06 || 10,000,000 || 97.67 | 72.46
100,000 || 96.14 | 47.61 || 10,000,000 | 96.03* | 44.64"

Experiments
00000e

Splice Site Recognition

Discussion

Conclusions
o General speedup trick (clear, add, lookup operations) for
string kernels
@ Shared memory parallelization, able to train on 10 million
human splice sites

e Linadd gives speedup of factor 64 (4) for Spectrum (Weighted
Degree) kernel and 32 for MKL

@ 4 CPUs further speedup of factor 3.2 and for 8 CPU factor 5.4
o parallelized 8 CPU linadd gives speedup of factor 125 (21) for
Spectrum (Weighted Degree) kernel, up to 200 for MKL
Discussion

@ State-of-the-art accuracy
@ Could we do better by encoding invariances?

rrrrr ho

Implemented in SHOGUN http://www.shogun-toolbox.org

http://www.shogun-toolbox.org

Advertisement
°

New JMLR Track

Machine Learning Open Source Software

To support the open source movement JMLR is proud to announce
a new track on machine learning open source software.

Contributions to http://jmlr.org/mloss/ should be related to
@ Implementations of machine learning algorithms,
@ Toolboxes,
o Languages for scientific computing
and should include
@ A 4 page description,
@ The code,
@ A recognised open source license.

Contribute to http://mloss.org the mloss repository!

http://jmlr.org/mloss/
http://mloss.org

	Introduction
	

	Linadd Algorithm
	

	Experiments
	
	

	Advertisement
	

