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Classification

Given training examples (xi , yi )
N
i=1 ∈ (X , {−1,+1})N

Linear Classifier f (x) = sign (w · x + b)
Kernel Machine (e.g. Support Vector Machine), learn
weighting α ∈ RN on training examples in kernel feature
space Φ(x)

f (x) = sign

(
N∑

i=1

yiαik(x, xi ) + b

)
,

where Kernel k(x, x′) = Φ(x) · Φ(x′)
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Classification using Kernel Machines I

Single Kernel
Kernel Machine (e.g. Support Vector Machine)

learn weighting α ∈ RN on training examples (xi , yi )
N
i=1 in

kernel feature space Φ(x)

f (x) = sign

(
N∑

i=1

yiαik(x, xi ) + b

)

where Kernel k(x, x′) = Φ(x) · Φ(x′)
still linear classifier f (x) = sign (w · x + b) in kernel feature

space, with weighting w =
∑N

i=1 yiαiΦ(xi ) and examples
x 7→ Φ(x)

via kernel: non-linear discrimination in input space
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Classification using Kernel Machines II

Multiple Kernels

Linear combination of kernels k(x, x′) =
∑M

j=1 βj kj(x, x′),
βj ≥ 0. Learn α and β. Resulting classifier:

f (x) = sign

 M∑
j=1

βj

N∑
i=1

yiαikj(x, xi ) + b


Learn weighting over training examples α and kernels β
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When is Multiple Kernel Learning useful?

Combining Heterogeneous Data

Consider data from different domains: e.g Bioinformatics
features: DNA-strings, binding energies, conservation,
structure,. . .

k(x, x′) =
β1 kdna(xdna, x

′
dna) + β2 knrg (xnrg , x′nrg ) + β3 k3d(x3d , x

′
3d) + · · ·
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When is Multiple Kernel Learning useful?

Interpretability

Bioinformatics: One weight per position in sequence
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When is Multiple Kernel Learning useful?

Automated Model Selection
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Deriving the Semi-Infinite Linear Program

Derivation

For details see Sonnenburg, Rätsch, Schäfer, Schölkopf 2006



Introduction and Motivation Multiple Kernel Learning Applications, Extensions, Outlook

Deriving the Semi-Infinite Linear Program

SVM Primal Formulation

min
1

2
‖w‖2

2 + C
N∑

i=1

ξn

w.r.t. w ∈ RD , ξ ∈ RN
+, b ∈ R

s.t. yi

(
wTΦ(xi ) + b

)
≥ 1− ξi ,∀i = 1, . . . ,N

Properties: equivalent to SVM for M = 1; solution sparse in
“blocks”; each block j corresponds to one kernel
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Deriving the Semi-Infinite Linear Program

MKL Primal Formulation

min
1

2

 M∑
j=1

βj ‖wj‖2

2

+ C
N∑

i=1

ξn

w.r.t. w = (w1, . . . ,wM), wj ∈ RDj , ∀j = 1 . . .M

β ∈ RM
+ , ξ ∈ RN

+, b ∈ R

s.t. yi

 M∑
j=1

βjwj
TΦj(xi ) + b

 ≥ 1− ξi , ∀i = 1, . . . ,N

M∑
j=1

βj = 1

Properties: equivalent to SVM for M = 1; solution sparse in
“blocks”; each block j corresponds to one kernel
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Deriving the Semi-Infinite Linear Program

MKL Dual Formulation

Bach, Lanckriet, Jordan 2004:

min γ −
N∑

i=1

αi

w.r.t. γ ∈ R,α ∈ RN

s.t. 0 ≤ α ≤ C ,
N∑

i=1

αiyi = 0

1

2

N∑
r=1

N∑
s=1

αrαsyr ysKj(xr , xs)− γ ≤ 0, ∀j = 1, . . . ,M

Properties: equivalent to SVM for M = 1
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Deriving the Semi-Infinite Linear Program

The Semi-Infinite Linear Program I

max θ

w.r.t. θ ∈ R,β ∈ RM
+ with

M∑
j=1

βj = 1

s.t.
M∑

j=1

βj

(
1

2

N∑
r=1

N∑
s=1

αrαsyr ysKj(xr , xs)︸ ︷︷ ︸
=:Sj (α)

−
N∑

i=1

αi

)
≥ θ

for all α with 0 ≤ α ≤ C and
N∑

i=1

yiαi = 0

Properties:

linear, optimize over a convex combination of β

infinitely many constraints, one for each 0 ≤ α ≤ C

can use standard SVM to identify most violated constraints
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Deriving the Semi-Infinite Linear Program

The Semi-Infinite Linear Program II

max θ

w.r.t. θ ∈ R,β ∈ RM
+ with

M∑
j=1

βj = 1

s.t.
M∑

j=1

βj

(
1

2
Sj(α)−

N∑
i=1

αi

)
≥ θ

for all α with 0 ≤ α ≤ C and
N∑

i=1

yiαi = 0

Solving the SILP:
Column Generation

fast, but no known convergence rate

Use Boosting like techniques: Arc-GV or AdaBoost∗

known convergence rate O(log(M)/ε2)

Chunking like algorithm
consider suboptimal SVM solutions: empirically 3-5 times
faster
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Deriving the Semi-Infinite Linear Program

Solving the SILP: Column Generation I
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Deriving the Semi-Infinite Linear Program

Solving the SILP: Column Generation II

max θ

w.r.t. θ ∈ R,β ∈ RM
+ with

M∑
j=1

βj = 1

s.t.
M∑

j=1

βj

(
1

2
Sj(α)−

N∑
i=1

αi

)
≥ θ

for all α with 0 ≤ α ≤ C and
N∑

i=1

yiαi = 0

iteratively find most violated constraints, solve linear program
with current constraints, . . . , till convergence to the global
optimum

M∑
j=1

βj

(
1

2
Sj(α)−

N∑
i=1

αi

)
=

1

2

N∑
r=1

N∑
s=1

αrαsyr ys

M∑
j=1

βjkj(xr , xs)−
N∑

i=1

αi ,

solved by taking set of most violated constraints into account
most violated constraints given by SVM solution for fixed β
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Extensions

Regression

Primal Formulation:

min
1

2

 M∑
j=1

βj ‖wj‖

2

+ C
N∑

i=1

(ξi + ξ∗i )

w.r.t. w = (w1, . . . ,wM), wj ∈ RDj , ∀j = 1 . . .M

β ∈ RM
+ , ξ ∈ RN , ξ∗ ∈ RN

+, b ∈ R

s.t.
M∑

j=1

βjwj
TΦj(xi ) + b ≤ yi + ε+ ξi , ∀i = 1 . . .N

M∑
j=1

βjwj
TΦj(xi ) + b ≥ yi − ε− ξ∗i , ∀i = 1 . . .N

M∑
j=1

βj = 1
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Extensions

One Class

Primal Formulation:

min
1

2

 M∑
j=1

βj ‖wj‖2

2

+ C
N∑

i=1

ξi − ρ

w.r.t. w = (w1, . . . ,wM), wj ∈ RDj , ∀j = 1 . . .M

β ∈ RM
+ , ξ ∈ RN

+

s.t. yi

 M∑
j=1

βjwj
TΦj(xi )

 ≥ ρ− ξi , ∀i = 1, . . . ,N

M∑
j=1

βj = 1

Generalized for arbitrary strictly convex differentiable loss
functions (Sonnenburg, Rätsch, Schäfer, Schölkopf 2006)
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Extensions

Multiclass

Primal Formulation (Zien, Ong 2007):

min
1

2

 M∑
j=1

βj ‖wj‖2

2

+ C
N∑

i=1

ξn

w.r.t. w = (w1, . . . ,wM), wj ∈ Rkj , ∀j = 1 . . .M

β ∈ RM
+ , s ∈ RN×c , ξ ∈ RN

+, b ∈ R
s.t. ξi = max

u 6=yi

siu, siu ≥ 0,

M∑
j=1

βjwj
T (Φj(xi , yi )− Φj(xi , u)) + byi − bu ≥ 1− siu,

∀i = 1 . . .N, ∀u = 1 . . . c
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Applications

Automated Model Selection - Regression

f (x) = sin(ax) + sin(bx) + cx for varying a

Support Vector Regression with 10 RBF-Kernels of different
width

Knowledge discovery
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Applications

Feature Extraction

Support Vector Classification on Bioinformatics problem,
distinguish “splice sites” form “fake sites” (aligned DNA
sequences)

One weight βj per position and per sub-sequence length

Displayed: Learned weights of 500 kernels
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Outlook

Summary and Outlook

MKL learns convex combination of kernels
⇒ allows (to some extend) for automated model selection
⇒ allows for interpreting SVM result
⇒ matches prior knowledge on real-world bioinformatics problem

Simple: iterative wrapper algorithm around single kernel
SVM

General: same technique applicable to a wide range of
problems (1-class, 2-class, Multiclass, Regression, . . .)

Fast: suitable for large scale problems (> 100, 000 examples)

Download free source http://www.shogun-toolbox.org.

http://www.shogun-toolbox.org
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