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Features - Overview

Machine Learning Toolbox SHOGUN

Main Features:

(*]

Toolbox's focus is on kernel methods esp. Support Vector
Machines (SVMs) for computational biology

Includes a variety of common kernels (Linear, Polynomial,
Gaussian) and recent String Kernels

Kernels can be combined; weighting can be learned using
Multiple Kernel Learning.

Tuned for large scale data sets (parallelized SVM training on
10,000,000 DNA sequences in 27hrs, parallelized SVM testing
on 7 billion examples)

For string kernels: = interpretability
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Kernels

String Kernels

@ Spectrum Kernel
o Count k-mers in each sequence, Spectrum Kernel is sum of
product of counts

o Weighted Degree Kernel

k(s1,82) = w7 +wi + w2+ w2 +

$1—>—AGT GGACATCAGTAGACAG —>
$2—>— TTA CAAAG TAGAC] TT—>
o Weighted Degree Kernel with Shifts

k(x1,%) = We,3 + We3 + Wiy
X4 CTACGTATT TCCGEGATTG—>
TR
X2—>—T IAAAGG] CCTGAAGACGG—>
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Going Large Scale

Linadd Optimization

Update rule: f; « fo/d + > jewla — aJ‘?’d)yj k(xi, x;)
Exploiting k(x;, x;) = ®(x;) - ®(x;) and w = vazl a;yi®(x;):

e 43 (o — o)y 0(x,) - 9(x) = £+ w - 9(x)
JEW
Key Idea: Store w and compute w - ®(x) efficiently
o Clear: w=20
@ Add: w, «— wy, +v (only needed |W| times per iteration)

@ Lookup: obtain w, (must be highly efficient)

= speedup of factor 60 (7) for Spectrum (Weighted Degree
Kernel) = parallelized additional factor 2 (5)
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Multiple Domains

Multiple Kernel Learning

(*]

Multiple input domains (binding energies, DNA sequence, ... )
Kernel k(x,x") = ®(x) - ®(x’) used in standard SVM Classifier

L
f(x) = sign <Z yiaik(x, x;) + b>

i=1

(]

o Now: linear combination of kernels (again a kernel)
M
k(xvxl) = Zﬂj kj(X,X,), ﬁ_j >0
j=1

@ Possible to learn weights [3;
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Interpretability

Questions:
o Where is which k—mer of importance ?

o Where is which k—mer - length of importance ?
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Finding Transcription Start Sites

Properties of Transcription Start Sites (TSS)

;I_FBS Promoter
- =
| — ‘ -3
\ / / / r 5' UTR Intfons and
oo O Coding Exons
TSS

DTFs@

e POL Il binds to a rather vague region of ~ [—20, +20] bp

@ Upstream of TSS: promoter containing transcription factor
binding sites

@ Downstream of TSS: 5" UTR, and further downstream coding
regions and introns (different oligomer statistics)

@ 3D structure of the promoter must allow the transcription
factors to bind
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Properties

Features to describe the TSS

(*]

TEBS in Promotor region
Condition: DNA should not be too twisted

CpG islands (often over TSS/first exon; in most, but not all
promoters)

TSS with TATA box (=~ —30 bp upstream)

Exon content in UTR 5" region

(7]

(7]

(7]

(4]

Distance to first donor splice site

Idea: Combine weak features to build strong promoter
predictor
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Kernels

Combine (Five) Sub-Kernels

Simply add up kernel for different features:

@ TSS signal (including parts of core promoter with TATA box)
— use Weighted Degree Shift kernel

Q@ CpG Islands, distant enhancers and TFBS upstream of TSS

— use Spectrum kernel (large window upstream of TSS)
© model UTR and coding sequence downstream of TSS

— another Spectrum kernel (window downstream of TSS)
@ stacking energy of DNA

— use btwist energy of dinucleotides with linear kernel

O twistedness of DNA
— use btwist angle of dinucleotides with linear kernel
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Results

Receiver Operator Characteristic Curve

ROC dbtssv5 — dbtssv4 (chunksize 50)
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= 35% true positives at a false positive rate of 1/1000
(best other method find about a half (18%)) .
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Interpretability

Overview over Discriminative Features

ARTS Promoter Detector
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Discussion

Conclusions
o Developed a new TSS finder, “"ARTS"

@ In genome wide evaluation achieves state-of-the-art results:
ARTS about 35% true positives at a false positive rate of
1/1000 (best other method about a half, 18%)

@ Reason: large scale SVM training/evaluation with string
kernels, intensively modelling the TSS region
o Future work:
o Drosophila, C. elegans, Arabidopsis, ...

o Motif Discovery
o Alternative Transcription Start Sites
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Availability

Datasets, Genomebrowser custom track, a lot more details:
http://www.fml.tuebingen.mpg.de/raetsch/projects/arts

Free source code of SHOGUN toolbox used to train ARTS:
http://www.fml.tuebingen.mpg.de/raetsch/projects/shogun

Thank youl!



http://www.fml.tuebingen.mpg.de/raetsch/projects/arts
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