Large Scale Genomic Sequence SVM Classifiers

Soren Sonnenburg! Gunnar Ritsch® Bernhard Scholkopf*

Fraunhofer Institut

Rechnerarchitektur
und Softwaretechnik

T Fraunhofer FIRST.IDA, Kekuléstr. 7, 12489 Berlin, Germany
" Friedrich Miescher Laboratory of the Max Planck Society,

* Max Planck Institute for Biological Cybernetics,
Spemannstr. 37-39, 72076 Tubingen, Germany

Soeren.Sonnenburg@first.fraunhofer.de,
{Gunnar.Raetsch,Bernhard.Schoelkopf}@tuebingen.mpg.de

Large Scale Problems

Algorithm

A Real World Large Scale Dataset
Results

Outlook and Conclusion

e Text Classification

— Task: Given N documents, with class label £1, predict text type.
— Approach: Words-in-a-bag kernel, n-gram kernel + SVM

e Biology, e.g. Promotor, Splice Site Prediction

— Task: Given N sequences around Promotor/Splice Site (label +1) and
fake examples (label —1), predict whether there is a Promotor/Splice
Site in the middle

— Approach: String kernel + SVM

Properties:

= large N is needed to achieve high accuracy (i.e. N = 1,000, 000)
= kernel is inner product of sparse feature vectors

Large Scale Genomic Sequence SVM Classifiers

e Given:

— N training examples (x;,y;) € (X,£1),i=1...N
— kernel K(x,x’) = ®&(x) - (')
— where X discrete space and ®(x) sparse
e Examples:
— words-in-a-bag-kernel

— k-mer based kernels (Spektrum, Weighted Degree)

e Task: Train SVM on Large Scale Datasets, e.g. N = 10°

Sonnenburg, Ratsch, Scholkopf

How?

e optimize kernel (i.e. find O(L) formulation, where L = dim(X))

e tune SVM training

= We will do both!

SVM training:

e Kernel Caching infeasable
(for N = 10° only 125 kernel rows fit in 1GiB memory)

e Proposed Method is faster 4+ needs no kernel caching

Analyzing SVM/i9ht;

training algorithm (chunking):
while optimality conditions are violated do
select ¢ variables for the working set.

solve reduced problem on the working set.
end while

e At each iteration, the vector f, f; = > ._ ajy;jk(z;z;) i =1... N is
needed for checking termination criteria and selecting new working set
(based on gradient w.r.t. o and).

e Avoiding to recompute f, most time is spend computing “linear updates”
on f on the working set W

Ji — fz'Old + Z (o — O‘go'ld)yj k(i ;)
JEW

Large Scale Genomic Sequence SVM Classifiers

The update rule: f; «— f{)ld + ZjEW(Oéj — C)é?ld)yj k(zs, ;)

Exploiting k(x;, ;) = ®(x;) - (x;) and w = Z,‘Z\il a;y; P(x;):
fi — fz'Old + Z (o — Oégo'ld)yjq)(wz‘) - (x;) = fz'Old +w" - P (x;)
JjeEWwW

W normal on working set)

(w
Key ldea: Store w" and compute w" - ®(x) efficiently

When is that possible ?

1. w" has low dimensionality, sparse (e.g. 4° for Feature map of Spectrum
Kernel of order 8 DNA)

2. w" has very few nonzero entries, although high dimensional (e.g. 104
for Weighted Degree Kernel of order 20 on DNA sequences of length 100)

Sonnenburg, Ratsch, Scholkopf 6

Large Scale Genomic Sequence SVM Classifiers

Treating w

e w must be accessible by some index u (i.e. u = 1...4% for 8-mers of
Spectrum Kernel on DNA or word index for word-in-a-bag kernel)

e Needed Operations

— Clear: w=0

— Add: wy — Wy + (only needed |W| times per iteration)
— Lookup: obtain w,, (must be highly efficient)
e Storage

— Explicit Map (store dense w); Lookup in O(1)
— Sorted Array (word-in-bag-kernel: all words sorted with value attached)

Lookup in O(log(> . I(w, # 0)))
— Suffix Trees; Lookup in O(K)

Sonnenburg, Ratsch, Scholkopf 7

Large Scale Genomic Sequence SVM Classifiers

Recall we need to compute updates on f (effort c;|W|LN):

fi— o+ Z (o; — a?ld)yj k(zi, ;) forallt=1...N
JEW
Modified SVM! 9"t ysing “LinAdd" algorithm (effort co/ LN, ¢ lookup cost)

fi:O, OéZ'ZOfOF’i:1,...,N

fort=1,2,... do
Check optimality conditions and stop if optimal, select working set W
based on f and «, store a®? = «
solve reduced problem W and update o

clear w

w «— Ww + (Oéj — Oé?ld)yjq)(iﬁj) fOF all j c %74

update f; = fi + w - ®(x;) foralli=1,... N
end for

Speedup of factor %\W|

Sonnenburg, Ratsch, Scholkopf

Large Scale Genomic Sequence SVM Classifiers [|
[[|

A REAL WORLD LARGE SCALE DATASET

Splice sites are locations on DNA at boundaries of
- exons (which code for proteins)
- introns (which do not)

—— €XON —intron 1€X0N-intron 1€XON - intron 1€X0ON - intron T— €Xon
ONA -+ I T

ATG GT AG GT AG GT AG GT AG
TTG,TAA

TGA
UUG,UAA

AUG GU AG GU AG GU AG GU AG UGA

pre-mRNA 2P | N O I Py

transcription

splicing
mRNA co> I
AUG
translation UUG,UAA
UGA
protein N I C

Sonnenburg, Ratsch, Scholkopf 9

Large Scale Genomic Sequence SVM Classifiers

Exon

AAACAAATAAGTAACTAATCTTTTAGGAAGAACGTTTCAACCATTTTGAG
ATTACAGATATAATAATCTAATT
CACTCCCCAAATCAACGATATTTTAGTTCACTAACACATCCGTCTGTGCC

|
TCATCAATCTCCAAAACCAACAC

Il
AAGTTGCCAATTCAATGTTCCAC
Y TGTGCTGATGGAAACGGAGAAGTC

TTGTTTTAATATTCAATTTTTTAC
TACCTAATTATGAAATTAAAATTC

e aligned sequences of fixed length (AG always at centered position)

e Task: distinguish splice sites from fake - splice sites

= 2-class classification problem

Sonnenburg, Ratsch, Scholkopf

10

Large Scale Genomic Sequence SVM Classifiers

N
SVM Classifier f(x) = sign <Z y;aik(x, x;) + b)

i:1d L—k
k(w,z) =) Be Y I(upy(e) = ug(x))
k=1 =1

e [length of the sequence x
e d maximal “match length” taken into account

e uy ;(x) subsequence of length k at position [of sequence x
Example degree d = 3 :

x AAACAAATAAGTAACTAATCTTTTAGGAAGAACGTTTCAACCATTTTGAG
H#l-mers oo b oo bee oo o e | ..
#2-mers Il..... ..o I P I P
#3-mers e R |

x’ TACCTAATTATGAAATTAAATTTCWWM‘GTGCTGATGGAAACGGAGAAGTC

k(x,x')=p1-21+ (2 -8+ F3 -4

Sonnenburg, Ratsch, Scholkopf 11

Large Scale Genomic Sequence SVM Classifiers

for linear comb. of kernels:} . (o — o)y, k(zs, 25) (O(Ld|W|N))
AAACTAATTATGAAATTAAATTTCAGAGTGCTGATGGAAACGGAGAAGAA
e use one tree of depth d per position in sequence

e for lookup use traverse one tree of depth d per position in sequence

Example d = 3 :
A/O\G A/O\G A/O\G
1 25 _
e e
O dib o (48" (ode 48
b bl A S
f3 3 3

output for N sequences of length L in O(Ld- N) (d depth of tree = degree
of WD kernel)

Sonnenburg, Ratsch, Scholkopf 12

\ AUC | rel. AUC Imp. | Test Err t orig | t linadd

500 | 96.91% - 6.03% 1 3
1000 | 97.82% 29.45% 6.03% 1 5
5000 | 98.96% 52.29% 3.38% 19 24
10000 | 99.28% 30.77% 2.40% 58 45
30000 | 99.58% 41.67% 1.57% 317 159
50000 | 99.65% 16.67% 1.31% 794 355
100000 | 99.73% 22.86% 1.07% 2,507 7601
200000 | 99.80% 25.93% 0.92% 8,863 2,024
500000 | 99.84% 20.00% 0.83% 40,632 9,119
1000000 | 99.87% 18.75% 0.71% || 131,379 | 26,107

e doubling the training data reduces the AUC gap to 100% by 20%

(high accuracy necessary as classifier will be applied genome wide)

Speedup of factor 5!

Conclusion:

e general method applicable to all kernels that can be written as inner
product in some sparse feature space, which can be enumerated + has
efficient clear, add, lookup operations

e speedup of factor 20 (5) for Spectrum (Weighted Degree) kernel (also
speeds up MKL)

e more training data helps (99.87% AUC on C. elegans splice sites)

e in paper extensions to Spectrum/Weighted Degree (WD) kernel:

— WD kernel: O(L) algorithm; WD kernel with-mismatches; position
Invariant version
— predicting using mismatch spectrum kernel in O(K L)

Future: train on Human Splice Sites: 3 - 107 examples
(note: dataset already ~ 6GiB in size)

