Large Scale Genomic Sequence SVM Classifiers

Sören Sonnenburg[†], Gunnar Rätsch[‡]

Bernhard Schölkopf*

Fraunhofer Institut Rechnerarchitektur und Softwaretechnik

[†] Fraunhofer FIRST.IDA, Kekuléstr. 7, 12489 Berlin, Germany ^b Friedrich Miescher Laboratory of the Max Planck Society, * Max Planck Institute for Biological Cybernetics, Spemannstr. 37-39, 72076 Tübingen, Germany

Soeren.Sonnenburg@first.fraunhofer.de, {Gunnar.Raetsch,Bernhard.Schoelkopf}@tuebingen.mpg.de

ROADMAP:

- Large Scale Problems
- Algorithm
- A Real World Large Scale Dataset
- Results
- Outlook and Conclusion

LARGE SCALE PROBLEMS

• Text Classification

- Task: Given N documents, with class label $\pm 1,$ predict text type.
- Approach: Words-in-a-bag kernel, n-gram kernel + SVM
- Biology, e.g. Promotor, Splice Site Prediction
 - Task: Given N sequences around Promotor/Splice Site (label +1) and fake examples (label -1), predict whether there is a Promotor/Splice Site in the middle
 - Approach: String kernel + SVM

Properties:

- \Rightarrow large N is needed to achieve high accuracy (i.e. N = 1,000,000)
- \Rightarrow kernel is inner product of sparse feature vectors

FORMALLY

• Given:

- N training examples $(\boldsymbol{x}_i, y_i) \in (\mathcal{X}, \pm 1), i = 1 \dots N$
- kernel $K({\boldsymbol x},{\boldsymbol x}')=\Phi({\boldsymbol x})\cdot\Phi({\boldsymbol x}')$
- where ${\mathcal X}$ discrete space and $\Phi(x)$ sparse
- Examples:
 - words-in-a-bag-kernel
 - k-mer based kernels (Spektrum, Weighted Degree)
- Task: Train SVM on Large Scale Datasets, e.g. ${\cal N}=10^6$

Speeding up SVM training

How?

- optimize kernel (i.e. find O(L) formulation, where $L = dim(\mathcal{X})$)
- tune SVM training
- \Rightarrow We will do both!

SVM training:

- Kernel Caching infeasable (for $N = 10^6$ only 125 kernel rows fit in 1GiB memory)
- Proposed Method is faster + needs no kernel caching

DERIVATION I

Analyzing SVM^{*light*}:

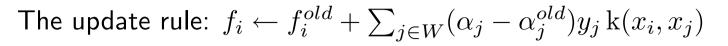
training algorithm (chunking):

while optimality conditions are violated do
 select q variables for the working set.
 solve reduced problem on the working set.
end while

- At each iteration, the vector *f*, f_i = ∑_{j=1}^N α_jy_j k(x_i, x_j) i = 1...N is needed for checking termination criteria and selecting new working set (based on gradient w.r.t. α and α).
- Avoiding to recompute f, most time is spend computing "linear updates" on f on the working set W

$$f_i \leftarrow f_i^{old} + \sum_{j \in W} (\alpha_j - \alpha_j^{old}) y_j \, \mathbf{k}(x_i, x_j)$$

DERIVATION II



Exploiting $k(\boldsymbol{x}_i, \boldsymbol{x}_j) = \Phi(\boldsymbol{x}_i) \cdot \Phi(\boldsymbol{x}_j)$ and $\boldsymbol{w} = \sum_{i=1}^N \alpha_i y_i \Phi(\boldsymbol{x}_i)$:

$$f_i \leftarrow f_i^{old} + \sum_{j \in W} (\alpha_j - \alpha_j^{old}) y_j \Phi(\boldsymbol{x}_i) \cdot \Phi(\boldsymbol{x}_j) = f_i^{old} + \boldsymbol{w}^W \cdot \Phi(\boldsymbol{x}_i)$$

 $(w^W$ normal on working set)

Key Idea: Store w^W and compute $w^W \cdot \Phi(x)$ efficiently

When is that possible ?

- 1. w^W has low dimensionality, sparse (e.g. 4^8 for Feature map of Spectrum Kernel of order 8 DNA)
- 2. w^W has very few nonzero entries, although high dimensional (e.g. 10^{14} for Weighted Degree Kernel of order 20 on DNA sequences of length 100)

TECHNICAL REMARK

Treating w

- w must be accessible by some index u (i.e. $u = 1 \dots 4^8$ for 8-mers of Spectrum Kernel on DNA or word index for word-in-a-bag kernel)
- Needed Operations
 - Clear: w=0
 - Add: $w_u \leftarrow w_u + v$
 - Lookup: obtain w_u

(only needed |W| times per iteration) (must be highly efficient)

- Storage
 - Explicit Map (store dense \boldsymbol{w}); Lookup in $\mathcal{O}(1)$
 - Sorted Array (word-in-bag-kernel: all words sorted with value attached) Lookup in $\mathcal{O}(\log(\sum_u I(w_u \neq 0)))$
 - Suffix Trees; Lookup in $\mathcal{O}(K)$

Algorithm

Recall we need to compute updates on **f** (effort $c_1|W|LN$):

$$f_i \leftarrow f_i^{old} + \sum_{j \in W} (\alpha_j - \alpha_j^{old}) y_j \operatorname{k}(x_i, x_j)$$
 for all $i = 1 \dots N$

Modified SVM^{*light*} using "LinAdd" algorithm (effort $c_2\ell LN$, ℓ lookup cost)

$$f_i = 0, \ \alpha_i = 0 \ \text{for} \ i = 1, \dots, N$$

for $t = 1, 2, \dots$ do

Check optimality conditions and stop if optimal, select working set W based on f and α , store $\alpha^{old} = \alpha$ solve reduced problem W and update α

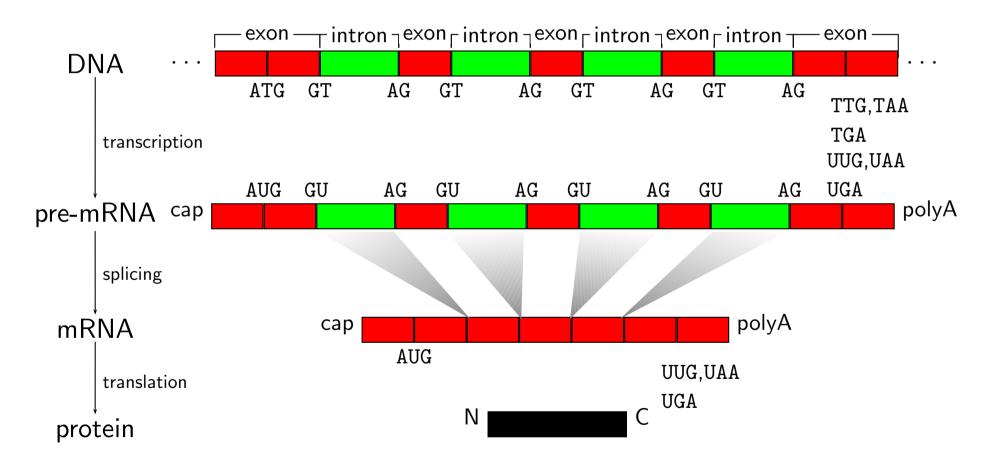
clear \boldsymbol{w} $\boldsymbol{w} \leftarrow \boldsymbol{w} + (\alpha_j - \alpha_j^{old})y_j\Phi(\boldsymbol{x}_j)$ for all $j \in W$ update $f_i = f_i + \boldsymbol{w} \cdot \Phi(\boldsymbol{x}_i)$ for all i = 1, ..., Nend for

Speedup of factor $\frac{c_1}{c_2\ell}|W|$

A REAL WORLD LARGE SCALE DATASET

Splice sites are locations on DNA at boundaries of

- exons (which code for proteins)
- introns (which do not)

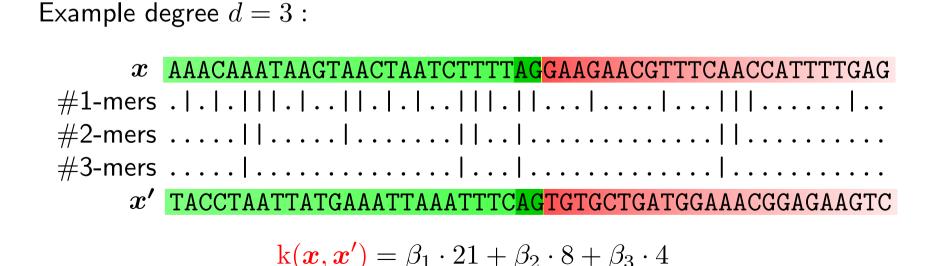


BIOLOGY: DETECTION OF SPLICE SITES

- aligned sequences of fixed length (AG always at centered position)
- Task: distinguish splice sites from fake splice sites
- \Rightarrow 2-class classification problem

APPROACH: WEIGHTED DEGREE KERNEL + SVM SVM Classifier $f(\boldsymbol{x}) = \operatorname{sign}\left(\sum_{i=1}^{N} y_i \alpha_i \mathbf{k}(\boldsymbol{x}, \boldsymbol{x}_i) + b\right)$ $\mathbf{k}(\boldsymbol{x}, \boldsymbol{x}') = \sum_{k=1}^{d} \beta_k \sum_{l=1}^{L-k} I(\boldsymbol{u}_{k,l}(\boldsymbol{x}) = \boldsymbol{u}_{k,l}(\boldsymbol{x}'))$

- L length of the sequence \boldsymbol{x}
- d maximal "match length" taken into account
- $oldsymbol{u}_{k,l}(oldsymbol{x})$ subsequence of length k at position l of sequence $oldsymbol{x}$



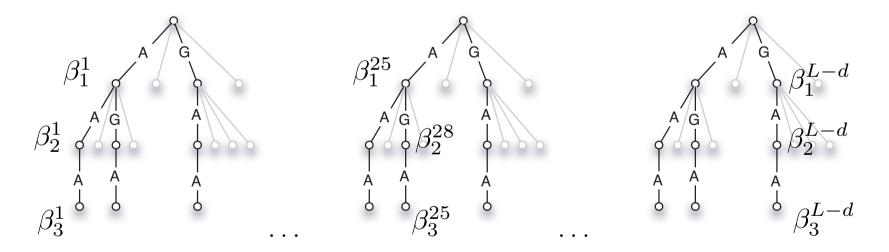
EFFICIENT COMPUTATION VIA SUFFIX TREE

for linear comb. of kernels: $\sum_{j \in W} (\alpha_j - \alpha_j^{old}) y_j k(x_i, x_j) (\mathcal{O}(Ld|W|N))$

AAACTAATTATGAAATTAAATTTC<mark>AG</mark>AGTGCTGATGGAAACGGAGAAGAA

- \bullet use one tree of depth d per position in sequence
- for lookup use traverse one tree of depth d per position in sequence

Example d = 3:



output for N sequences of length L in $\mathcal{O}(Ld\cdot N)$ (d depth of tree \equiv degree of WD kernel)

N	AUC	rel. AUC Imp.	Test Err	t orig	t linadd
500	96.91%	-	6.03%	1	3
1000	97.82%	29.45%	6.03%	1	5
5000	98.96%	52.29%	3.38%	19	24
10000	99.28%	30.77%	2.40%	58	45
30000	99.58%	41.67%	1.57%	317	159
50000	99.65%	16.67%	1.31%	794	355
100000	99.73%	22.86%	1.07%	2,507	761
200000	99.80%	25.93%	0.92%	8,863	2,024
500000	99.84%	20.00%	0.83%	40,632	9,119
1000000	99.87%	18.75%	0.71%	131,379	26,107

- doubling the training data reduces the AUC gap to 100% by 20%

(high accuracy necessary as classifier will be applied genome wide)

Speedup of factor 5!

CONCLUSION

Conclusion:

- general method applicable to all kernels that can be written as inner product in some sparse feature space, which can be enumerated + has efficient clear, add, lookup operations
- speedup of factor 20 (5) for Spectrum (Weighted Degree) kernel (also speeds up MKL)
- more training data helps (99.87% AUC on *C. elegans* splice sites)
- in paper extensions to Spectrum/Weighted Degree (WD) kernel:
 - WD kernel: $\mathcal{O}(L)$ algorithm; WD kernel with-mismatches; position invariant version
 - predicting using mismatch spectrum kernel in $\mathcal{O}(KL)$

Future: train on *Human Splice Sites:* $3 \cdot 10^7$ examples (note: dataset already $\approx 6GiB$ in size)