Learning interpretable SVMs for biological sequence classification

Sören Sonnenburg[†], Gunnar Rätsch[†], Christin Schäfer[†]

Fraunhofer Institut

Institut
Rechnerarchitektur
und Softwaretechnik

† Fraunhofer FIRST.IDA, Kekuléstr. 7, 12489 Berlin, Germany ‡ Friedrich Miescher Laboratory of the Max Planck Society, Spemannstr. 39, 72076 Tübingen, Germany {Soeren.Sonnenburg, Christin.Schaefer}@first.fraunhofer.de, Gunnar.Raetsch@tuebingen.mpg.de

ROADMAP:

- The Motivating Application
- Multiple Kernel Learning (MKL)
- Derivation of the MKL Optimization Problem
- Algorithms
- Significance Analysis
- Results
- Outlook and Conclusion

THE MOTIVATING APPLICATION

Splice sites are locations on DNA at boundaries of

- exons (which code for proteins)
- introns (which do not)

BIOLOGY: DETECTION OF SPLICE SITES

Intron Exon

- aligned sequences of fixed length (AG always at position)
- Task: distinguish splice sites from fake splice sites
- ⇒ 2-class classifcation problem

APPROACH: STRING KERNEL + SVM

• use SVM classifier
$$f(\boldsymbol{x}) = \operatorname{sign}\left(\sum_{i=1}^N y_i \alpha_i \mathbf{k}(\boldsymbol{x}, \boldsymbol{x}_i) + b\right)$$

ullet find parameters lpha by solving quadratic optimization problem:

$$\max_{\boldsymbol{\alpha}} \quad \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i,j=1}^N \alpha_i \alpha_j y_i y_j \mathbf{k}(\boldsymbol{x}_i, \boldsymbol{x}_j)$$
 subject to $\alpha_i \in [0, \boldsymbol{C}], i = 1, \dots, N, \sum_{i=1}^N \alpha_i y_i = 0.$

Solution has no local minima

Key ingredient Kernel here "Weighted Degree Kernel"

$$\mathbf{k}(\boldsymbol{x}, \boldsymbol{x'}) = \sum_{k=1}^{d} \beta_k \sum_{l=1}^{L-k} \mathrm{I}(\boldsymbol{u}_{k,l}(\boldsymbol{x}) = \boldsymbol{u}_{k,l}(\boldsymbol{x'})),$$

FIRST

Weighted Degree Kernel

$$\mathbf{k}(\boldsymbol{x}, \boldsymbol{x'}) = \sum_{k=1}^{d} \beta_k \sum_{l=1}^{L-k} \mathrm{I}(\boldsymbol{u}_{k,l}(\boldsymbol{x}) = \boldsymbol{u}_{k,l}(\boldsymbol{x'}))$$

- L length of the sequence x
- d maximal "match length" taken into account
- ullet $oldsymbol{u}_{k,l}(oldsymbol{x})$ subsequence of length k at position l of sequence $oldsymbol{x}$

Example degree d = 3:

$$\mathbf{k}(\boldsymbol{x}, \boldsymbol{x}') = \beta_1 \cdot 21 + \beta_2 \cdot 8 + \beta_3 \cdot 4$$

Position dependant Weighting $\boldsymbol{\beta}$

Even more weights:

$$\mathbf{k}(\boldsymbol{x}, \boldsymbol{x'}) = \sum_{k=1}^{d} \sum_{l=1}^{L-k} \beta_{\boldsymbol{k}\boldsymbol{l}} \mathrm{I}(\boldsymbol{u}_{k,l}(\boldsymbol{x}) = \boldsymbol{u}_{k,l}(\boldsymbol{x'}))$$

Success

Choosing a particular weighting

$$\beta_k = \frac{2(d-k+1)}{(d(d+1))}$$

seems to solve the task: on 500,000 training examples test AUC 99,80% (test error 0.78%)

Open questions

- Why does that weighting make sense?
- Is there a better weighting?
 - in terms of sense
 - classification performance
- Can we learn that weighting?
- What does that have to do with Multiple Kernel Learning?

REFORMULATION: MULTIPLE KERNEL LEARNING

The Weighted Degree kernel is a linear combination of kernels!

$$\mathbf{k}(\boldsymbol{x}, \boldsymbol{x'}) = \sum_{k=1}^{d} \beta_k \sum_{l=1}^{L-k} \mathrm{I}(\boldsymbol{u}_{k,l}(\boldsymbol{x}) = \boldsymbol{u}_{k,l}(\boldsymbol{x'}))$$

$$= \sum_{k=1}^{d} \beta_k \mathbf{k}_k(\boldsymbol{x}, \boldsymbol{x'})$$

$$\mathbf{k}_k(\boldsymbol{x}, \boldsymbol{x'}) = \sum_{l=1}^{L-k} \mathrm{I}(\boldsymbol{u}_{k,l}(\boldsymbol{x}) = \boldsymbol{u}_{k,l}(\boldsymbol{x'})).$$

with

(Can also be applied to other String Kernels)

 \Rightarrow need to solve the so called **Multiple Kernel Learning Problem**, i.e. determine (β, α, b) simultaneously.

Multiple Kernel Learning

Motivation

• Kernel $k(x, x') = \Phi(x) \cdot \Phi(x')$ used in standard SVM Classifier

$$f(\boldsymbol{x}) = \operatorname{sign}\left(\sum_{i=1}^{\ell} y_i \alpha_i \mathbf{k}(\boldsymbol{x}, \boldsymbol{x}_i) + b\right)$$

Now: linear combination of kernels (again a kernel)

$$\mathbf{k}(\boldsymbol{x}, \boldsymbol{x'}) = \sum_{j=1}^{M} \beta_j \, \mathbf{k}_j(\boldsymbol{x}, \boldsymbol{x'}), \, \beta_j \ge 0$$

- useful: Polynomial kernels of different degree, kernels on different domain
- **but:** How to learn and constrain weights β_j ?

Constraining the weights

L_2 -vs. L_1 -Norm

- in max problem weights certain β_j would grow infinitely (min shrink to zero) \Rightarrow constraining β_j necessary
- Dense $\|\boldsymbol{\beta}\|_2 = 1$ (Lin and Zhang 2004)
- vs. Sparse $\|\beta\|_1 = 1$ (Bach, Lanckriet and Jordan 2004)
 - convex combination of kernels
 - sparse solution in terms of kernels
 - allows for interpretation of result

constraints on β_j :

$$\sum_{j=1}^{N} \beta_j = 1, \ \beta_j \ge 0$$

REWRITING THE MKL FORMULATION

From the Standard SVM Primal to the Semi-Infinite Linear Program:

STANDARD SVM OPTIMIZATION PROBLEM

This we all know

SVM Primal formulation:

$$\min \quad \frac{1}{2} \|\boldsymbol{w}\|_2^2 + C \sum_{i=1}^N \xi_n$$
w.r.t. $\boldsymbol{w} \in \mathbb{R}^k, \boldsymbol{\xi} \in \mathbb{R}^N_+, b \in \mathbb{R}$
s.t. $y_i \left(\boldsymbol{w}^\top \Phi(\boldsymbol{x}_i) + b \right) \geq 1 - \xi_i, \forall i = 1, \dots, N$

MKL OPTIMIZATION PROBLEM I

MKL Primal formulation:

$$\begin{aligned} & \min & & \frac{1}{2} \left(\sum_{j=1}^{M} \beta_{j} \left\| \boldsymbol{w}_{j} \right\|_{2} \right)^{2} + C \sum_{i=1}^{N} \xi_{n} \\ & \text{w.r.t.} & & \boldsymbol{w} = (\boldsymbol{w}_{1}, \dots, \boldsymbol{w}_{M}), \boldsymbol{w}_{j} \in \mathbb{R}^{k_{j}}, \boldsymbol{\xi} \in \mathbb{R}^{N}_{+}, \boldsymbol{\beta} \in \mathbb{R}^{M}_{+}, \boldsymbol{b} \in \mathbb{R} \\ & \text{s.t.} & & y_{i} \left(\sum_{j=1}^{M} \beta_{j} \boldsymbol{w}_{j}^{\top} \Phi_{j}(\boldsymbol{x}_{i}) + \boldsymbol{b} \right) \geq 1 - \xi_{i}, \forall i = 1, \dots, N \\ & & \sum_{j=1}^{M} \beta_{j} = 1 \end{aligned}$$

Properties: equivalent to SVM for M=1; solution sparse in "blocks"; each block j corresponds to one kernel

MKL OPTIMIZATION PROBLEM II

Dual Formulation (Bach, Lanckriet, Jordan 2004):

$$\min \qquad \frac{1}{2}\gamma^2 - \sum_{i=1}^N \alpha_i$$
w.r.t. $\gamma \in \mathbb{R}, \boldsymbol{\alpha} \in \mathbb{R}^N$
s.t. $0 \le \boldsymbol{\alpha} \le C, \sum_{i=1}^N \alpha_i y_i = 0$

$$\sum_{r=1}^N \sum_{s=1}^N \alpha_r \alpha_s y_r y_s K_j(\boldsymbol{x}_r, \boldsymbol{x}_s) - \gamma^2 \le 0, \ \forall j = 1, \dots, M$$

"partial Lagrangian:"

$$L := \frac{1}{2}\gamma^2 - \sum_{i=1}^{N} \alpha_i + \sum_{j=1}^{M} \beta_j (S_j(\alpha) - \gamma^2)$$

MKL Optimization Problem II

Reformulation as Semi-Infinite Linear Program:

$$\max_{\boldsymbol{\beta}} \min_{\boldsymbol{\alpha}} \sum_{j=1}^{M} \beta_{j} \left(\frac{1}{2} S_{j}(\boldsymbol{\alpha}) - \sum_{i=1}^{N} \alpha_{i} \right)$$
s.t. $0 \le \boldsymbol{\alpha} \le C, \sum_{i=1}^{N} \alpha_{i} y_{i} = 0, \sum_{j=1}^{M} \beta_{j} = 1$

$$\begin{array}{ll} \max & \theta \\ \text{w.r.t.} & \theta \in \mathbb{R}, \boldsymbol{\beta} \in \mathbb{R}_+^M \text{ with } \sum_{j=1}^M \beta_j = 1 \\ \\ \text{s.t.} & \sum_{j=1}^M \beta_j \left(\frac{1}{2} S_j(\boldsymbol{\alpha}) - \sum_{i=1}^N \alpha_i \right) \geq \theta \\ \\ \text{for all } \boldsymbol{\alpha} \text{ with } 0 \leq \boldsymbol{\alpha} \leq C \text{ and } \sum_{i=1}^N y_i \alpha_i = 0 \end{array}$$

⇒ Linear, but infinitely many constraints

The Semi-Infinite Linear Program

Properties:

- optimize a convex combination
- infinitely many constraints
- quite easy to identify violated constraints

Solving the SILP:

- Use Boosting like techniques: Arc-GV or AdaBoost*
- Column Generation
- SMO like algorithm

COLUMN GENERATION I

$$\begin{array}{ll} \max & \theta \\ \text{w.r.t.} & \theta \in \mathbb{R}, \boldsymbol{\beta} \in \mathbb{R}_+^M \text{ with } \sum_{j=1}^M \beta_j = 1 \\ \\ \text{s.t.} & \sum_{j=1}^M \beta_j \left(\frac{1}{2} S_j(\boldsymbol{\alpha}) - \sum_{i=1}^N \alpha_i \right) \geq \theta \\ \\ \text{for all } \boldsymbol{\alpha} \text{ with } 0 \leq \boldsymbol{\alpha} \leq C \text{ and } \sum_{i=1}^N y_i \alpha_i = 0 \end{array}$$

- solved by taking set of most violated constraints into account
- ullet most violated constraints given by SVM solution for fixed $oldsymbol{eta}$

$$\sum_{j=1}^{M} \beta_j \left(\frac{1}{2} S_j(\boldsymbol{\alpha}) - \sum_{i=1}^{N} \alpha_i \right) = \frac{1}{2} \sum_{r=1}^{N} \sum_{s=1}^{N} \alpha_r \alpha_s y_r y_s \sum_{j=1}^{M} \beta_j k_j(\boldsymbol{x}_r, \boldsymbol{x}_s) - \sum_{i=1}^{N} \alpha_i,$$

• iteratively find most violated constraints, solve linear program with current constraints, ..., till convergence to the global optimum

COLUMN GENERATION II

RESULTS ON SPLICE SITES

What characterizes the positions:

- Can we use that weighting to interpret the SVM solution? ⇒ Not yet!
 - Stability of the weighting β ?
 - Which weights are significant?

Use a statistical test to investigate significance of weights

TOY DATASET

- DNA sequences of length 50 with hidden motifs at 10-16 and 30-36
- \bullet 8 imes 50 string kernels with max. word- length 8
- compute significance level by bootstrapping
- columns ≡ noise level
- subplot columns weights used at certain position, rows oligomer length

RESULTS ON SPLICE SITES

What characterizes the positions:

- Can we use that weighting to interpret the SVM solution? ⇒ NOW!
 - Stability of the weighting β ?
 - Which weights are significant?

Use a statistical test to investigate significance of weights

CONCLUSION

Conclusion:

- MKL learns convex combination of kernels
 - ⇒ allows for interpreting SVM result
 - ⇒ matches prior knowledge about splice sites
- simple iterative algorithm
- suitable for large scale problems (> 100,000 examples)

Discussion:

- Can we improve classification using MKL?
 - $\Rightarrow \|.\|_1 = 1$ good choice ?
- Does MKL overfit and if so when ?
 - ⇒ How to regularize complexity ?
- Can we do model selection via MKL?