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THE MOTIVATING APPLICATION

Splice sites are locations on DNA at boundaries of
- exons (which code for proteins)
- introns (which do not)

— €XON — intron 1€XON - intron 1€X0ON - intron 1€X0ON - intron T— €éxon
DNA - I
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translation UUG,UAA
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AAACAAATAAGTAACTAATCTTTT
AAGATTAAAAAAAAACAAATTTTTAGC
CACTCCCCAAATCAACGATATTTTAG
TTAATTTCACTTCCACATACTTCCAGA
TTGTTTTAATATTCAATTTTTTAC

TACCTAATTATGAAATTAAAATTC

e aligned sequences of fixed length (AG always at position)

e Task: distinguish splice sites from fake - splice sites

= 2-class classifcation problem

[GTGCTGATGGAAACGGAGAAGTC
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e use SVM classifier N
f(x) = sign Z yiozk(x, x;) + b
i=1

e find parameters a by solving quadratic optimization problem:

N N
max > oy — % > aoyyik(z, @)
o i=1 i,j=1
N
subjectto «; € [0,C],i=1,...,N,> a;y; = 0.
i=1

e Solution has no local minima

Key ingredient Kernel here “Weighted Degree Kernel”

k(z,z') = Z Bk i H(ur,(x) = up(x')),

k=1 [=1
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d L—k
k(z,z') = B > N ug(e) = ug ()
k=1 [=1

e [ length of the sequence x
e d maximal “match length” taken into account

e uy ;(x) subsequence of length £ at position [ of sequence x

Example degree d = 3 :

€ AAACAAATAAGTAACTAATCTTTTAGGAAGAACGTTTCAACCATTTTGAG
=3 I 0 o 1<V I I I R R U U O I I IR O [y IR IR I I I ..
#2-mers ..... Il..... oo I TP .. ...
#3-mers .. ... | P L
x’ TACCTAATTATGAAATTAAATTTCWWMW\ETGCTGATGGAAACGGAGAAGTC

k(z,x')=01-214+02-8+ (34
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| HHH
POSITION DEPENDANT WEIGHTING (3 A
Even more weights:
d L—k
k(z,z') =Y ) Bul(ug(w) = ug ()
k=1 [=1
’
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Choosing a particular weighting

C2(d—k+1)
= 1)

seems to solve the task: on 500,000 training examples test AUC 99, 80%
(test error 0.78%)

Open questions
e Why does that weighting make sense ?

e |s there a better weighting ?

— in terms of sense
— classification performance

e Can we learn that weighting ?

e What does that have to do with Multiple Kernel Learning ?
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The Weighted Degree kernel is a linear combination of kernels !

d  L-k
k(z,2') = y: B Sj [(ug,i(z) = upi(z))
k=1 =1

d
= ) Biki(z, @)
k=1

with

L—k
ki(x, z") = Z I(ug () = ug ().
=1

(Can also be applied to other String Kernels)

= need to solve the so called Multiple Kernel Learning Problem,
i.e. determine (3, a,b) simultaneously.
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Motivation

e Kernel k(x,x') = ®(x) - ®(a’) used in standard SVM Classifier

¢
f(x) = sign (Z yiouk(x, ;) + b>

1=1

e Now: linear combination of kernels (again a kernel)
M
k(z,z") = Zﬁj ki(x,x"), B; >0
j=1

e useful: Polynomial kernels of different degree, kernels on different domain

e but: How to learn and constrain weights 3; 7
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Lo-vs. Li-Norm

e in max problem weights certain 3; would grow infinitely (min shrink to

zero) = constraining [3; necessary
e Dense ||3|, =1 (Lin and Zhang 2004)

e vs. Sparse ||3||; = 1 (Bach, Lanckriet and Jordan 2004)

— convex combination of kernels
— sparse solution in terms of kernels
— allows for interpretation of result

constraints on (3;:

N
j=1
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From the Standard SVM Primal to the Semi-Infinite Linear Program:

SVM
Primal Formulation

MKL - SVM
Primal Formulation

MKL - SVM
Dual Formulation

MKL - SVM
SILP Formulation
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This we all know

SVM Primal formulation:

N
. 1 2
min > wl+CY 6,
i=1

wrt. weRFECRY beR

S.t. Yi (’LUT(I)(wZ) + b) >1-&,Vi=1,...
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MKL Primal formulation:

2
M N

, 1
min (Y glwll, | +CY 6
j=1 i=1

wrt.  w=(wy,...,wy)w; ERY £cRY BeRY beR

M
S.t. Yi ZﬁjijCI)j(mi) +b| >1-¢&,Vi=1,....N
j=1

M
2_fi=1
j=1

Properties: equivalent to SVM for M = 1; solution sparse in “blocks”;
each block j corresponds to one kernel
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Dual Formulation (Bach, Lanckriet, Jordan 2004):

, 1
min 572 — Z %
w.r.t. veR, aeRY

“partial Lagrangian:”
N M

L ::% 2 _ Zozi—l-Zﬁj(Sj(a) —’72)
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Reformulation as Semi-Infinite Linear Program:

M ] N
; |29 () — .
mgxmam;ﬁj (2 (o) ;a >

N M
st. 0 < a< C,Z&Z‘yi :O,Zﬁj =1
i=1 =1

max

w.r.t.

s.t.

0

for all ¢ with 0 < o < C' and Zyiai =0
i=1

= Linear, but infinitely many constraints
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Properties:

e optimize a convex combination
e infinitely many constraints

e (uite easy to identify violated constraints
Solving the SILP:

e Use Boosting like techniques: Arc-GV or AdaBoost*

e Column Generation

e SMO like algorithm

Sonnenburg, Ratsch, Schafer

16



Learning interpretable SVMs for biological sequence classification

max 0
w.r.t. HE]R,BER with Zﬁjzl
71=1
M N
s.t. Z ( S(a)—ZaZ)Z@
j=1 i=1
N
for all a with 0 < o < C and Zyiai =0
i=1

e solved by taking set of most violated constraints into account

e most violated constraints given by SVM solution for fixed 3

M N
Z ﬁj %S}(Oé) - Z 87 Z Z ArAsYrlYs Z 6] mr: 333 Z Qg
j=1 i=1

rlsl

e iteratively find most violated constraints, solve linear program with current
constraints, ..., till convergence to the global optimum
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get o

Solve SVM for current

weighting 3

Obtain most violated
linear constraint on 6

new (3

repeat until convergence

new constraint

Theory: Algorithm converges!

Practice: converges fast!
Solve Linear

Program
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RESULTS ON SPLICE SITES

What characterizes the positions:
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0.005
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o
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e Can we use that weighting to interpret the SVM solution? = Not yet!

— Stability of the weighting 37
— Which weights are significant?

Use a statistical test to investigate significance of weights
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TOoYy DATASET FIRST

k—mer

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

k—mer

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
position in sequence position in sequence position in sequence position in sequence

e DNA sequences of length 50 with hidden motifs at 10-16 and 30-36
e 8 X 50 string kernels with max. word- length 8

e compute significance level by bootstrapping

e columns = noise level

e subplot columns weights used at certain position, rows oligomer length
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RESULTS ON SPLICE SITES FIRST

What characterizes the positions:

10.8

© 00 N O 0o h~h O N =

-
o

-50 -40 -30 -20 -10 Start+10 420 430 440 450

e Can we use that weighting to interpret the SVM solution? = NOW !

— Stability of the weighting 37
— Which weights are significant?

Use a statistical test to investigate significance of weights
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Conclusion:

e MKL learns convex combination of kernels
= allows for interpreting SVM result
= matches prior knowledge about splice sites

e simple iterative algorithm

e suitable for large scale problems (> 100,000 examples)

Discussion:

e Can we improve classification using MKL ?
= ||.||; = 1 good choice 7

e Does MKL overfit and if so when 7
= How to regularize complexity ?

e Can we do model selection via MKL 7
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